Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(15): 158101, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682967

ABSTRACT

Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials.

2.
ACS Nano ; 15(6): 9453-9468, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-33886269

ABSTRACT

Reanalysis of an asymmetric poly(ethylene-alt-propylene)-block-polydimethylsiloxane (PEP-PDMS) diblock copolymer first investigated in 1999 has revealed a rich phase behavior including a dodecagonal quasicrystal (DDQC), a Frank-Kasper σ phase, and a body-centered cubic (BCC) packing at high temperature adjacent to the disordered state. On subjecting the sample to large amplitude oscillatory shear well below the σ-BCC order-order transition temperature (TOOT), small-angle X-ray scattering evidenced the emergence of a twinned BCC phase that, on heating, underwent a phase transition to an unusually anisotropic DDQC state. Surprisingly, we observe no evidence of this apparent epitaxy on heating or cooling through the equilibrium σ-BCC transition. We rationalize these results in terms of a shear-induced order-order transition and an apparent BCC-DDQC epitaxy favored by micelle translation-mediated ordering dynamics far below TOOT.

3.
ACS Nano ; 14(10): 13754-13764, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32866375

ABSTRACT

Salt-doped A/B/AB ternary polymer blends, wherein an AB copolymer acts as a surfactant to stabilize otherwise incompatible A and B homopolymers, display a wide range of nanostructured morphologies with significant tunability. Among these structures, a bicontinuous microemulsion (BµE) has been a notable target. Here, we report the surprising appearance of a robust C15 Laves phase, at compositions near where the BµE has recently been reported, in lithium bis(trifluoromethane) sulfonimide (LiTFSI)-doped low-molar-mass poly(ethylene oxide) (PEO)/polystyrene (PS)/symmetric PS-b-PEO block copolymer blends. The materials were analyzed by a combination of small-angle X-ray scattering (SAXS), 1H NMR spectroscopy, and impedance spectroscopy. The C15 phase emerges at a high total homopolymer volume fraction ϕH = 0.8 with a salt composition r = 0.06 (Li+/[EO]) and persists as a coexisting phase across a large area of the isothermal phase diagram with high PS homopolymer compositions. Notably, the structure exhibits a huge unit cell size, a = 121 nm, with an unusually high micelle core volume fraction (fcore = 0.41) and an unusually low fraction of amphiphile (20%). This unit cell dimension is at least 50% larger than any previously reported C15 phase in soft matter, despite the low molar masses used, unlocking the possibility of copolymer-based photonic crystals without compromising processability. The nanostructured phase evolution from lamellar to hexagonal to C15 along the EO60 isopleth (ϕPEO,homo-LiTFSI/ϕH = 0.6) is rationalized as a consequence of asymmetry in the homopolymer solubility limit for each block, which leads to exclusion of PS homopolymer from the PS-b-PEO brush prior to exclusion of the PEO homopolymer, driving increased interfacial curvature and favoring the emergence of the C15 Laves phase.

4.
ACS Macro Lett ; 9(2): 197-203, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-35638682

ABSTRACT

A renewed focus on the phase behavior of nominally single-component, compositionally asymmetric diblock copolymers has revealed a host of previously unanticipated Frank-Kasper (FK) and quasicrystalline phases. However, these periodic and aperiodic particle packings have thus far only been reported in low molecular weight, highly conformationally asymmetric diblock copolymers, leaving researchers with a relatively small library of polymers in which these phases can be studied. In this work, we report on a simple approach to access these morphologies: blending two diblock copolymers with the same corona block length and varied core block lengths. Compositionally symmetric and asymmetric polystyrene-b-1,4-polybutadiene (SB) diblock copolymers with constant corona block lengths were blended together and shown via small-angle X-ray scattering and transmission electron microscopy to order into the FK A15 and σ phases, as well as a dodecagonal quasicrystal, providing a route to various particle packings in high molecular weight diblock copolymer melts.

5.
ACS Macro Lett ; 9(4): 576-582, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35648489

ABSTRACT

The observation of complex, Frank-Kasper (FK) particle packings in diblock polymer melts has until recently been limited to low molecular weight, conformationally asymmetric polymers. We report temperature-dependent small-angle X-ray scattering (SAXS) studies of blends of a sphere-forming poly(styrene-block-1,4-butadiene) (SB) diblock polymer (Mn = 33.3 kg/mol, D = Mw/Mn = 1.08, fB = 0.18) with two different poly(1,4-butadiene) (B) homopolymer additives. When the B additive Mn is the same as that of the diblock core-forming B segment, these blends remarkably form tetrahedrally close-packed FK σ and Laves C14 and C15 phases with increasing B content. However, binary blends in which the B additive Mn is 60% of that of the diblock B segment form only the canonical body-centered cubic (BCC) particle packing and hexagonally-packed cylinders (HEXc). The observed phase behavior is rationalized in terms of "wet" and "dry" brush blending, whereby higher B Mn drives stronger localization of the homopolymer in the particle cores while preserving the interfacial area per SB diblock chain. The consequent packing constraints in these blends destabilize the BCC packing, and FK phases emerge as optimal minimal surface solutions to filling space at constant density while maximizing local particle sphericity.

6.
Phys Rev Lett ; 121(20): 208002, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30500248

ABSTRACT

The phase behavior of poly(styrene)-b-poly(1,4-butadiene) diblock copolymers with a polymer block invariant degree of polymerization N[over ¯]_{b}≈800 shows no evidence of Frank-Kasper phases, in contrast to low molar mass diblock copolymers (N[over ¯]_{b}<100) with the same conformational asymmetry. A universal self-concentration crossover parameter N[over ¯]_{x}≈400 is identified, directly related to the crossover to entanglement dynamics in polymer melts. Mean-field behavior is recovered when N[over ¯]_{b}>N[over ¯]_{x}, while complex low symmetry phase formation is attributed to fluctuations and space-filling constraints, which dominate when N[over ¯]_{b}

SELECTION OF CITATIONS
SEARCH DETAIL
...