Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 103(15): 7424-7433, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37385969

ABSTRACT

BACKGROUND: This study examined the changes in soil fertility in a maize cropping area when chemical fertilizer was partially replaced with straw or livestock manure over a 33-year period. Four treatments were included: (i) CK (no fertilizer application); (ii) NPK (only chemical fertilizer application); (iii) NPKM (chemical fertilizer partly replaced with livestock manure); (iv) NPKS (chemical fertilizer partly replaced with straw). RESULTS: Soil organic carbon increased by 41.7% and 95.5% in the NPKS and NPKM treatments, respectively, over the 33-year trial compared with the initial concentration. However, soil organic carbon in NPK was significantly reduced by 9.8%. Soil total N, P and K increased in both NPKM and NPKS treatments compared to the original soil. Soil pH was significantly acidified from 7.6 to 5.97 in the NPK treatment during the experimental period. The NPKM and NPKS treatments buffered the acidification compared to NPK. Meta-analysis results showed that, compared with NPK, NPKM significantly raised soil bacteria and fungi populations by 38.7% and 58.6%; enhanced microbial biomass carbon and nitrogen by 66.3% and 63%, respectively; and increased sucrase, urease and catalase activities by 34.2%, 48.2% and 21.5%. NPKS significantly increased soil fungi and actinomycetes populations by 24.3% and 41.2%, respectively; enhanced microbial biomass carbon and nitrogen by 27.1% and 45%; and strengthened sucrase and urease activities by 36% and 20.3%, respectively. CONCLUSION: Long-term chemical fertilizer application led to the deterioration of soil fertility and environment. Partial replacement of chemical fertilizers with organic materials could significantly amend and buffer such negative effects. © 2023 Society of Chemical Industry.


Subject(s)
Fertilizers , Soil , Fertilizers/analysis , Agriculture , Manure/analysis , Carbon/analysis , Urease , Nitrogen/analysis , Sucrase , China
2.
J Environ Manage ; 340: 118002, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37119631

ABSTRACT

Water diverted from rivers for irrigation areas often contains large amounts of nitrogen (N), which is frequently overlooked and its role in contributing to N pollution is unknown. To investigate the influence of water diversion on N in different systems within irrigation areas, we developed and optimized the N footprint model, taking into account the N carried by irrigation water diversion and drainage in irrigated areas. This optimized model can serve as a reference for evaluating N pollution in other irrigated areas. By analyzing 29 years (1991-2019) of statistical data from a diverted irrigation area in Ningxia Hui Autonomous Region (Ningxia), China, the study assessed the contribution of water diversion to N in agriculture, animal husbandry, and human domestic activities. The results demonstrated that water diversion and drainage accounted for 10.3% and 13.8% in whole system, of the total N input and output in Ningxia, highlighting the potential N pollution risks associated with these activities. Additionally, the use of fertilizers in the plant subsystem, feed in the animal subsystem, and sanitary sewage in the human subsystem represented the main sources of N pollution in each subsystem. On a temporal scale, the study found that N loss increased year by year before reaching a stable level, indicating that N loss had reached its peak in Ningxia. The correlation analysis suggested that rainfall could regulate N input and output in irrigated areas by showing a negative correlation with water diversion, agricultural water consumption, and N from irrigated areas. Moreover, the study revealed that the amount of N brought by water diverted from rivers for irrigation should be taken into account when calculating the amount of fertilizer N required in the irrigation area.


Subject(s)
Agricultural Irrigation , Nitrogen , Humans , Animals , Nitrogen/analysis , Agricultural Irrigation/methods , Environmental Pollution/analysis , Agriculture/methods , Water/analysis , China , Fertilizers/analysis
3.
PLoS One ; 17(10): e0276891, 2022.
Article in English | MEDLINE | ID: mdl-36315495

ABSTRACT

High nitrogen (N) input to soil can cause higher nitrous oxide (N2O) emissions, that is, a higher N2O/(N2O+N2) ratio, through an inhibition of N2O reductase activity and/or a decrease in soil pH. We assumed that there were two mechanisms for the effects of N input on N2O emissions, immediate and long-term effect. The immediate effect (field applied fertilizer N) can be eliminated by decreasing the N input, but not the long-term effect (soil accumulated N caused by long-term fertilization). Therefore, it is important to separate these effects to mitigate N2O emissions. To this end, soil samples along a 0‒5.2 m profile were collected from a long-term N fertilization experiment field with two N application rates, that is, 600 kg N ha-1 year-1 (N600) and no fertilizer N input (N0). External N addition was conducted for each subsample in the laboratory incubation study to produce two additional treatments, which were denoted as N600+N and N0+N treatments. The results showed that the combined immediate and long-term effects led to an increase in the N2O/(N2O+N2) ratio by 6.8%. Approximately 32.6% and 67.4% of increase could be explained by the immediate and long-term effects of N input, respectively. Meanwhile, the long-term effects were significantly positively correlated to soil organic carbon (SOC). These results indicate that excessive N fertilizer input to the soil can lead to increased N2O emissions if the soil has a high SOC content. The long-term effect of N input on the N2O/(N2O+N2) ratio should be considered when predicting soil N2O emissions under global environmental change scenarios.


Subject(s)
Nitrous Oxide , Soil , Nitrous Oxide/analysis , Nitrogen/analysis , Denitrification , Carbon , Agriculture , Fertilizers/analysis , China
4.
J Environ Manage ; 321: 115996, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36029628

ABSTRACT

At present, excessive nutrient inputs caused by human activities have resulted in environmental problems such as agricultural non-point source pollution and water eutrophication. The Net Anthropogenic Nitrogen Inputs (NANI) model can be used to estimate the nitrogen (N) inputs to a region that are related to human activities. To explore the net nitrogen input of human activities in the main grain-producing areas of Northwestern China, the county-level statistical data for the Ningxia province and NANI model parameters were collected, the spatio-temporal distribution characteristics of NANI were analyzed and the uncertainty and sensitivity of the parameters for each component of NANI were quantitatively studied. The results showed that: (1) The average value of NANI in Ningxia from 1991 to 2019 was 7752 kg N km-2 yr-1. Over the study period, the inputs first showed an overall increase, followed by a decrease, and then tended to stabilize. Fertilizer N application was the main contributing factor, accounting for 55.6%. The high value of NANI in Ningxia was mainly concentrated in the Yellow River Diversion Irrigation Area. (2) The 95% confidence interval of NANI obtained by the Monte Carlo approach was compared with the results from common parameters in existing literature. The simulation results varied from -6.4% to 27.4% under the influence of the changing parameters. Net food and animal feed imports were the most uncertain input components affected by parameters, the variation range was -20.7%-77%. (3) The parameters of inputs that accounted for higher proportions of the NANI were more sensitive than the inputs with lower contributions. The sensitivity indexes of the parameters contained in the fertilizer N applications were higher than those of net food and animal feed imports and agricultural N-fixation. This study quantified the uncertainty and sensitivity of parameters in the process of NANI simulation and provides a reference for global peers in the application and selection of parameters to obtain more accurate simulation results.


Subject(s)
Fertilizers , Nitrogen , Animals , China , Environmental Monitoring/methods , Eutrophication , Fertilizers/analysis , Human Activities , Humans , Nitrogen/analysis , Rivers
5.
Sci Total Environ ; 838(Pt 4): 156473, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660610

ABSTRACT

Cattle grazing of pastures deposits urine onto the pasture soil at high nitrogen (N) rates that exceed the pasture's immediate N demands, increasing the risk of N loss. Nitrous oxide (N2O), a greenhouse gas, and dinitrogen (N2) are lost from the cattle urine patches. There is limited information on the in situ loss of N2 from grazed-pasture systems which is needed for understanding pasture soil N dynamics and balances. The 15N flux method was used to determine N2 and N2O fluxes over time following synthetic urine-15N application at either 400 or 800 kg N ha-1 to a grazed perennial pasture soil. Results showed that daily N2O fluxes were higher under 800 kg N ha-1 than under 400 kg N ha-1, but there was no significant difference in N2 fluxes. Cumulative N2O emissions from soil with 400 kg N ha-1 and 800 kg N ha-1 applied represented 0.16 ± 0.08% and 0.43 ± 0.08% of deposited N, respectively, while emitted N2 accounted for 32.1 ± 4.1% and 14.4 ± 1.7%, respectively, over 95 days after urine application. Codenitrification and denitrification co-occurred, with denitrification accounting for 97.9 to 98.5% of total N2 production. Recovery of urine-15N in pasture decreased with increasing N rate with 14.7 ± 0.5% and 9.9 ± 0.8% recovered at 400 and 800 kg N ha-1, respectively after 95 days. The N2O/(N2 + N2O) product ratio was generally higher during periods of nitrification of urine-N (the first month after urine application) but with no clear relationship to other measured variables. Contrary to our hypothesis, an elevated urine-N rate did not enhance N2 loss. This is speculated to be due to enhanced ammonia volatilisation and transfer of N as nitrate, to deeper soil layers. Soil relative gas diffusivity indicated that high N2 fluxes resulted from entrapped N2 diffusing from the draining soil.


Subject(s)
Nitrous Oxide , Soil , Ammonia , Animals , Cattle , Female , Nitrification , Nitrogen , Nitrous Oxide/analysis
6.
Environ Pollut ; 292(Pt A): 118344, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34637831

ABSTRACT

The effects of combined biochar and double inhibitor application on gaseous nitrogen (N; nitrous oxide [N2O] and ammonia [NH3]) emissions and N leaching in paddy soils remain unclear. We investigated the effects of biochar application at different rates and double inhibitor application (hydroquinone [HQ] and dicyandiamide [DCD]) on NH3 and N2O emissions, N leaching, as well as rice yield in a paddy field, with eight treatments, including conventional urea N application at 280 kg N ha-1 (CN); reduced N application at 240 kg N ha-1 (RN); RN + 7.5 t ha-1 biochar (RNB1); RN + 15 t ha-1 biochar (RNB2); RN + HQ + DCD (RNI); RNB1 + HQ + DCD (RNIB1); RNB2 + HQ + DCD (RNIB2); and a control without N fertilizer. When compared with N leaching under RN, biochar application reduced total N leaching by 26.9-34.8% but stimulated NH3 emissions by 13.2-27.1%, mainly because of enhanced floodwater and soil NH4+-N concentrations and pH, and increased N2O emission by 7.7-21.2%, potentially due to increased soil NO3--N concentrations. Urease and nitrification inhibitor addition decreased NH3 and N2O emissions, and total N leaching by 20.1%, 21.5%, and 22.1%, respectively. Compared with RN, combined biochar (7.5 t ha-1) and double inhibitor application decreased NH3 and N2O emissions, with reductions of 24.3% and 14.6%, respectively, and reduced total N leaching by up to 45.4%. Biochar application alone or combined with double inhibitors enhanced N use efficiency from 26.2% (RN) to 44.7% (RNIB2). Conversely, double inhibitor application alone or combined with biochar enhanced rice yield and reduced yield-scaled N2O emissions. Our results suggest that double inhibitor application alone or combined with 7.5 t ha-1 biochar is an effective practice to mitigate NH3 and N2O emission and N leaching in paddy fields.


Subject(s)
Agriculture , Oryza , Charcoal , Fertilizers/analysis , Nitrous Oxide/analysis , Soil
7.
Sci Total Environ ; 806(Pt 3): 150608, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34606854

ABSTRACT

Nitrous oxide (N2O) emissions from dairy-grazing pastures can be dominated by large emissions from small areas ('hotspots') frequently used by grazing dairy cattle (i.e., water troughs and gateways). N2O emissions from these hotspots are quantified by investigating whether N2O emissions and emission factors (% of applied N emitted as N2O, EF3) from potential hotspots are different from non-hotspots. To better characterise N2O emissions from hotspots and non-hotspots of farms to understand their contributions to national agricultural greenhouse gas inventory calculations, a series of measurements were conducted during winter and spring on two NZ typical dairy farms with contrasting soil drainage (poorly versus well drained). Before measurements were taken, the soils either received a cow urine application or remained untreated. The results showed that changes in water-filled pore space (WFPS) and mineral N around water troughs and gateways, due to additional stock movements and disproportionate excreta-N deposition during previous grazing events, affected both background and total N2O emissions. But there was little impact on EF3 values (calculated using IPCC guidelines) from deposited urine between hotspot and pasture areas. These results suggest the same EF3 values can be used for both to calculate emissions from urine deposited on grazed pastures. However, these results raise concerns about higher background emission in hotspots subtracted from measured emissions from urine-N deposition in calculating EF3 values and discounting the effects of disproportionate N inputs in intensive agriculture on increased background emissions (legacy effect). This IPCC inventory method does not account for the legacy effect of N loading prior to the measurements which may underestimate the emissions. Thus, an allowance for higher hotspot background emissions could be included in the Inventory to accurately estimate total emissions from agriculture.


Subject(s)
Greenhouse Gases , Nitrous Oxide , Agriculture , Animals , Cattle , Farms , Female , Greenhouse Gases/analysis , Nitrous Oxide/analysis , Soil
8.
Sci Total Environ ; 769: 144712, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33465630

ABSTRACT

Dairy farms produce considerable quantities of nutrient-rich effluent, which is generally stored before use as a soil amendment. Unfortunately, a portion of the dairy effluent N can be lost through volatilization during open pond storage to the atmosphere. Adding of covering materials to effluent during storage could increase contact with NH4+ and modify effluent pH, thereby reducing NH3 volatilization and retaining the effluent N as fertilizer for crop application. Here the mitigation effect of cover materials on ammonia (NH3) volatilization from open stored effluents was measured. A pilot-scale study was conducted using effluent collected at the Youran Dairy Farm Company Limited, Luhe County, Jiangsu, China, from 15 June to 15 August 2019. The study included seven treatments: control without amendment (Control), 30-mm × 25-mm corn cob pieces (CC), light expanded clay aggregate - LECA (CP), lactic acid (LA) and lactic acid plus CC (CCL), CP (CPL) or 20-mm plastic balls (PBL). The NH3 emission from the Control treatment was 120.1 g N m-2, which was increased by 38.1% in the CP treatment, possibly due to increased effluent pH. The application of CC reduced NH3 loss by 69.2%, compared with the Control, possibly due to high physical resistance, adsorption of NH4+ and effluent pH reduction. The lactic acid amendment alone and in combination with other materials also reduced NH3 volatilization by 27.4% and 31.0-46.7%, respectively. After 62 days of storage, effluent N conserved in the CC and CCL treatments were 21.0% and 22.0% higher than that in the Control (P < 0.05). Our results suggest that application of corn cob pieces, alone or in combination with lactic acid, as effluent cover could effectively mitigate NH3 volatilization and retain N, thereby enhancing the fertilizer value of the stored dairy effluent and co-applied as a soil amendment after two months open storage.


Subject(s)
Ammonia , Zea mays , Agriculture , Ammonia/analysis , China , Fertilizers/analysis , Nitrogen/analysis , Nutrients , Soil , Volatilization
9.
J Sci Food Agric ; 101(3): 1091-1099, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32767561

ABSTRACT

BACKGROUND: 3,4-Dimethylpyrazole phosphate (DMPP) is a nitrification inhibitor which can restrict nitrate (NO3 - ) production. Boric acid is a substance which inhibits urease activity. However, few studies have focused on the inhibitory effect of boric acid on urea hydrolysis and the possible synergistic effect with DMPP. Thus, an incubation trial was conducted to determine the impact of boric acid and DMPP addition on urea-N transformation, and their synergistic effects, in chernozem soil (Che) and red soil (RS). Four treatments were set up in each soil: urea only (U); urea combined with DMPP (UD); urea combined with boric acid (UB); and urea combined with both DMPP and boric acid (UDB). RESULTS: Compared to U, adding DMPP (UD) increased NH3 emissions by 11% and 13% and decreased soil NO3 - -N concentration by 38% and 13% in Che and RS, respectively. Boric acid addition (UB) effectively prolonged the half-life time of urea by 0.8 and 0.4 days, reduced NH3 volatilizations by 11% and 16% and delayed the occurrence of NH3 emission peaks for 3 and 4 days in contrast to U treatment in Che and RS, respectively. UDB treatment mitigated the NH3 volatilizations caused by the addition of DMPP (UD) by 16% and 29% in Che and RS, respectively. Additionally, a better nitrification inhibition rate was found in the UDB treatment compared to other treatments in both soils. CONCLUSIONS: There is potential to develop a new N transformation inhibition strategy with the use of a combination of boric acid and DMPP. © 2020 Society of Chemical Industry.


Subject(s)
Boric Acids/chemistry , Pyrazoles/chemistry , Urea/chemistry , Ammonia/chemistry , Fertilizers/analysis , Kinetics , Nitrates/chemistry , Nitrification , Soil/chemistry
10.
Sci Rep ; 10(1): 21253, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277591

ABSTRACT

The conversion of natural grassland to semi-natural or artificial ecosystems is a large-scale land-use change (LUC) commonly occurring to saline-alkaline land. Conversion of natural to artificial ecosystems, with addition of anthropogenic nitrogen (N) fertilizer, influences N availability in the soil that may result in higher N2O emission along with depletion of 15N, while converting from natural to semi-natural the influence may be small. So, this study assesses the impact of LUC on N2O emission and 15N in N2O emitted from naturally occurring saline-alkaline soil when changing from natural grassland (Phragmites australis) to semi-natural [Tamarix chinensis (Tamarix)] and to cropland (Gossypium spp.). The grassland and Tamarix ecosystems were not subject to any management practice, while the cropland received fertilizer and irrigation. Overall, median N2O flux was significantly different among the ecosystems with the highest from the cropland (25.3 N2O-N µg m-2 h-1), intermediate (8.2 N2O-N µg m-2 h-1) from the Tamarix and the lowest (4.0 N2O-N µg m-2 h-1) from the grassland ecosystem. The 15N isotopic signatures in N2O emitted from the soil were also significantly affected by the LUC with more depleted from cropland (- 25.3 ‰) and less depleted from grassland (- 0.18 ‰). Our results suggested that the conversion of native saline-alkaline grassland with low N to Tamarix or cropland is likely to result in increased soil N2O emission and also contributes significantly to the depletion of the 15N in atmospheric N2O, and the contribution of anthropogenic N addition was found more significant than any other processes.

11.
Sci Total Environ ; 743: 140500, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32653704

ABSTRACT

Biochar and inhibitors applications have been proposed for mitigating soil greenhouse gas emissions. However, how biochar, inhibitors and the combination of biochar and inhibitors affect CH4 emissions remains unclear in paddy soils. The objective of this study was to explore the effects of biochar application alone, and in combination with urease (hydroquinone) and nitrification inhibitors (dicyandiamide) on CH4 emissions and yield-scaled CH4 emissions during three rice growing seasons in the Taihu Lake region (Suzhou and Jurong), China. In Suzhou, N fertilization rates of 120-280 kg N ha-1 increased CH4 emissions compared to no N fertilization (Control) (P < 0.05), and the highest emission was observed at 240 kg N ha-1, possibly due to the increase in rice-derived organic carbon (C) substrates for methanogens. Biochar amendment combined with N fertilization reduced CH4 emissions by 13.2-27.1% compared with optimal N (ON, Suzhou) and conventional N application (CN-J, Jurong) (P < 0.05). This was related to the reduction in soil dissolved organic C and the increase in soil redox potential. Addition of urease and nitrification inhibitor (ONI) decreased CH4 emissions by 15.7% compared with ON treatment. Combined application of biochar plus urease, nitrification and double inhibitors further decreased CH4 emissions by 22.2-51.0% compared with ON and CN-J treatment. ON resulted in the highest yield-scaled CH4 emissions, while combined application of biochar alone and in combination with the inhibitors decreased yield-scaled CH4 emissions by 12.7-54.9% compared with ON and CN-J treatment (P < 0.05). The lowest yield-scaled CH4 emissions were observed under combined application of 7.5 t ha-1 biochar with both urease and nitrification inhibitors. These findings suggest that combined application of biochar and inhibitors could mitigate total CH4 and yield-scaled CH4 emissions in paddy fields in this region.


Subject(s)
Oryza , Agriculture , Charcoal , China , Fertilizers , Methane/analysis , Nitrification , Nitrous Oxide/analysis , Soil , Urease
12.
Sci Total Environ ; 714: 136851, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32018984

ABSTRACT

The net anthropogenic phosphorus inputs (NAPI) model has been used extensively to assess changes in phosphorus (P) inputs and cycling in the environment. However, temporary populations have generally been unconsidered in these assessments. In this study, the NAPI model was used to estimate P loads from the 16 towns and villages in the Erhai Lake Basin (ELB), Southwest China and to evaluate the potential impact from temporary residents (tourism). The results showed that the average value P inputs in the basin (estimated at 2384 kg P km-2 year-1) were 5 times the national average level, and that temporary residents contributed 1%. Agriculture accounted for most of the net P, with chemical fertilizers (55% of the inputs) as the main source, followed by food and animal feed. Only 9.54% of the P inputs to the basin were exported. River water quality and NAPI were significantly correlated (P < 0.01). Tourism industry contributes significantly to regional economic growth and prosperity, but its beneficial effects on the economy does not equate with the adverse impact on environment. This study illustrates what is happening in Southwest China and provides scientific evidence that shows we need to find novel ways to reduce nutrients.

13.
Environ Monit Assess ; 192(2): 99, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31912244

ABSTRACT

It is widely acknowledged that dams affect sediment transport and water quality. To support water management of reservoirs, it is useful to explore how the fractions of phosphorus (P) in sediments were changed after the dam was built. The aim of this study was to assess the spatial and temporal trends of the P fractions in sediments from the Miyun Reservoir, a pivotal drinking water supply for Beijing City, the capital of China. Nine surface sediment samples, together with a sediment core, were collected. The concentrations of total P (TP) and their fractions were then determined by using a sequential extraction method. The results showed that the reservoir was classified into three areas spatially based on the TP concentrations, i.e., high (Baihe area), medium (transitional area), and low (Chaohe area) concentrations. The concentrations of iron-bound P (BD-P) and metal oxide-bound P (NaOH-P) were higher in the Baihe and Chaohe regions than those in the transitional area and tended to increase with water depth. Dam construction can lead to the concentrations of P increased in sediments and further increase the potential of internal P loadings. This study revealed the effect of dam construction on sedimentary P accumulation. The results will be helpful in better understanding the mobility and bioavailability of P in the aquatic ecosystem, which aim to achieve a more highly targeted environmental management for this important region.


Subject(s)
Drinking Water/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Beijing , China , Ecosystem , Eutrophication , Iron/analysis , Water Quality , Water Supply
14.
Sci Total Environ ; 669: 547-558, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30889444

ABSTRACT

Calculated N2O emission factors (EFs) of applied nitrogen (N) fertilizer are currently based upon a single, universal value advocated by the IPCC (Inter-governmental Panel on Climate Change) even though EFs are thought to vary with climate and soil types. Here, we compiled and analyzed 151 N2O EF values from agricultural fields across China. The EF of synthetic N applied to these croplands was 0.60%, on average, but differed significantly among six climatic zones across the country, with the highest EF found in the north subtropical zone for upland fields (0.93%) and the lowest in the middle subtropical zone for paddy fields (0.20%). Precipitation and soil pH, which showed non-linear relationships with EF, are among the factors governing it, explaining 7.0% and 8.0% of the regional variation in EFs, respectively. Annual precipitation was the key factor regulating N2O emissions from synthetic N fertilizers. Among crop types, legume crops had the highest EFs, which were significantly (P < 0.05) higher than those of cereals. Total soil N2O emissions from fertilized croplands with maize, rice, wheat, and vegetables in China, calculated using the climatic zone (regional) EFs, were estimated to be 239 Gg N yr-1 with an uncertainty of 21%. Importantly, this value was substantially (33%) lower than that (357 Gg N yr-1) derived from the IPCC default EF but close to the 253 Gg N yr-1 estimated using crop-specific EFs. N2O emissions from applied synthetic N fertilizer accounted for 66.5% of the total annual N2O emissions from China's maize, rice, wheat and vegetable fields. Taken together, our study's results strongly suggest that regional EFs should be included for accurate N2O inventories from croplands across China.


Subject(s)
Agriculture , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Nitrous Oxide/analysis , China , Crops, Agricultural
15.
Sci Total Environ ; 633: 230-239, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29574366

ABSTRACT

The impacts of manure application on soil ammonia (NH3) volatilization and greenhouse gas (GHG) emissions are of interest for both agronomic and environmental reasons. However, how the swine manure addition affects greenhouse gas and N emissions in North China Plain wheat fields is still unknown. A long-term fertilization experiment was carried out on a maize-wheat rotation system in Northern China (Zea mays L-Triticum aestivum L.) from 1990 to 2017. The experiment included four treatments: (1) No fertilizer (CK), (2) single application of chemical fertilizers (NPK), (3) NPK plus 22.5t/ha swine manure (NPKM), (4) NPK plus 33.7t/ha swine manure (NPKM+). A short-term fertilization experiment was conducted from 2016 to 2017 using the same treatments in a field that had been abandoned for decades. The emissions of NH3 and GHGs were measured during the wheat season from 2016 to 2017. Results showed that after long-term fertilization the wheat yields for NPKM treatment were 7105kg/ha, which were higher than NPK (3880kg/ha) and NPKM+ treatments (5518kg/ha). The wheat yields were similar after short-term fertilization (6098-6887kg/ha). The NH3-N emission factors (EFamm) for NPKM and NPKM+ treatments (1.1 and 1.1-1.4%, respectively) were lower than NPK treatment (2.2%) in both the long and short-term fertilization treatments. In the long- and short-term experiments the nitrous oxide (N2O) emission factors (EFnit) for NPKM+ treatment were 4.2% and 3.7%, respectively, which were higher than for the NPK treatment (3.5% and 2.5%, respectively) and the NPKM treatment (3.6% and 2.2%, respectively). In addition, under long and short-term fertilization, the greenhouse gas intensities for the NPKM+ treatment were 33.7 and 27.0kg CO2-eq/kg yield, respectively, which were higher than for the NPKM treatment (22.8 and 21.1kg CO2-eq/kg yield, respectively). These results imply that excessive swine manure application does not increase yield but increases GHG emissions.

16.
Sci Total Environ ; 628-629: 121-130, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29428854

ABSTRACT

The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N2O, NO and NH3) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha-1 (CN); N fertilizer at an optimal application rate of 125kgNha-1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha-1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha-1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N2O, NO, and NH3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH3 and N2O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N2O, NO, and NH3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N2O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions.


Subject(s)
Agriculture/methods , Air Pollutants/analysis , Fertilizers , Nitrogen/analysis , Charcoal , China , Gases , Nitrous Oxide , Soil , Triticum
17.
Sci Total Environ ; 618: 1173-1183, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29054672

ABSTRACT

Optimizing the nitrogen (N) application rate can increase crop yield while reducing the environmental risks. However, the optimal N rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. Taking the wheat-maize rotation cropping system on the North China Plain as a case study, we quantified the variation of N application rates when targeting constraints on yield, economic performance, N uptake and N utilization, by conducting field experiments between 2011 and 2013. Results showed that the optimal N application rate was highest when targeting N uptake (240kgha-1 for maize, and 326kgha-1 for wheat), followed by crop yield (208kgha-1 for maize, and 277kgha-1 for wheat) and economic income (191kgha-1 for maize, and 253kgha-1 for wheat). If environmental costs were considered, the optimal N application rates were further reduced by 20-30% compared to those when targeting maximum economic income. However, the optimal N rate, with environmental cost included, may result in soil nutrient mining under maize, and an extra input of 43kgNha-1 was needed to make the soil N balanced and maintain soil fertility in the long term. To obtain a win-win situation for both yield and environment, the optimal N rate should be controlled at 179kgha-1 for maize, which could achieve above 99.5% of maximum yield and have a favorable N balance, and at 202kgha-1 for wheat to achieve 97.4% of maximum yield, which was about 20kgNha-1 higher than that when N surplus was nil. Although these optimal N rates vary on spatial and temporal scales, they are still effective for the North China Plain where 32% of China's total maize and 45% of China's total wheat are produced. More experiments are still needed to determine the optimal N application rates in other regions. Use of these different optimal N rates would contribute to improving the sustainability of agricultural development in China.

18.
Sci Total Environ ; 465: 107-14, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23374420

ABSTRACT

Integration of a restricted grazing regime in winter with the use of a nitrification inhibitor can potentially reduce N2O emissions from grazed pasture systems. A three year field study was conducted to compare annual N2O emission rates from a "tight nitrogen" grazed farmlet with those from a control farmlet. The control farmlet was managed under a conventional rotational all-year grazing regime, while the "tight nitrogen" farmlet was under a similar grazing regime, except during winter and early spring seasons when cows grazed for about 6h per day. A nitrification inhibitor (dicyandiamide, DCD) was applied onto the "tight nitrogen" farmlet immediately after grazing through winter and early spring. A chamber technique was used to measure N2O emissions in several paddocks from each farmlet during three contrasting seasons each year. The IPCC (Intergovernmental Panel on Climate Change) inventory methodology was used to estimate CH4 and indirect N2O emissions and the life cycle assessment (LCA) methodology was used to calculate CO2 emissions from the farm systems. The individual and combined effects of restricted grazing and DCD use on N2O emissions were also determined. During the late spring/summer and autumn periods, N2O emission rates were generally similar between the two farmlets. The use of a restricted grazing regime and DCD reduced N2O emissions from the grazed farmlet during the winter/early spring seasons by 43-55%, 64-79% and 45-60% over each of the three years, respectively. The use of restricted grazing and DCD both resulted in a similar reduction in N2O emissions, but there was no significant further reduction from the combination of these technologies. For the three study years, the annual N2O emission rate from the "tight nitrogen" farmlet was 20% lower, on average, than from the control. Total annual greenhouse gas (GHG) emissions, however, were only 5% less in the "tight nitrogen" system.

SELECTION OF CITATIONS
SEARCH DETAIL
...