ABSTRACT
Risk-based sampling is an essential component of livestock health surveillance because it targets resources towards sub-populations with a higher risk of infection. Risk-based surveillance in U.S. livestock is limited because the locations of high-risk herds are often unknown and data to identify high-risk herds based on shipments are often unavailable. In this study, we use a novel, data-driven network model for the shipments of cattle in the U.S. (the U.S. Animal Movement Model, USAMM) to provide surveillance suggestions for cattle imported into the U.S. from Mexico. We describe the volume and locations where cattle are imported and analyze their predicted shipment patterns to identify counties that are most likely to receive shipments of imported cattle. Our results suggest that most imported cattle are sent to relatively few counties. Surveillance at 10 counties is predicted to sample 22-34% of imported cattle while surveillance at 50 counties is predicted to sample 43%-61% of imported cattle. These findings are based on the assumption that USAMM accurately describes the shipments of imported cattle because their shipments are not tracked separately from the remainder of the U.S. herd. However, we analyze two additional datasets - Interstate Certificates of Veterinary Inspection and brand inspection data - to ensure that the characteristics of potential post-import shipments do not change on an annual scale and are not dependent on the dataset informing our analyses. Overall, these results highlight the utility of USAMM to inform targeted surveillance strategies when complete shipment information is unavailable.