Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
J Colloid Interface Sci ; 678(Pt B): 388-399, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39255596

ABSTRACT

The traditional preparation of nanocomposite proton exchange membranes (PEM) is hindered by poor organic-inorganic interface compatibility, insufficient proton-conducting sites, easy aggregation of nanoparticles, and difficulty in leveraging nanoscale advantages. In this study, a novel method involving electrochemical anodic oxidation exfoliation was employed to prepare melamine-coated graphene oxide (Me@GO), which was subsequently subjected to in-situ polymerization with poly(2,5-benzimidazole) (ABPBI) to prepare a Me@GO/ABPBI composite proton exchange membrane. Benefiting from the strong hydrogen bonding and large π stacking interactions, melamine (Me) tightly bound to graphene oxide (GO), effectively preventing the secondary aggregation of GO after exfoliation. Moreover, the abundant alkaline functional groups of melamine enhanced the enhancement of phosphoric acid (PA) retention in the Me@GO/ABPBI membranes, thereby increasing the number of proton-conducting sites. The experimental results indicated that the introduction of Me@GO enhanced membrane properties. For Me@GO at a concentration of 1 wt%, the tensile strength of the 1Me@GO/ABPBI composite membrane reached 207 MPa, nearly 2.52 times that of the pure membrane. The proton conductivity of the 1Me@GO/ABPBI composite membrane reached 0.01 S cm-1 across a wide temperature range (40-180 °C), peaking at 0.087 S cm-1 at 180 °C. Additionally, a single-cell incorporating the 1Me@GO/ABPBI composite membrane achieved a peak power density of 0.304 W cm-2 at 160 °C, nearly 1.46 times that of the pure membrane. Benefiting from the well-dispersed and PA-enriched proton channels provided by Me@GO, the Me@GO/ABPBI composite membrane exhibits excellent prospects for wide-temperature range (40-180 °C) applications.

2.
Plant Physiol Biochem ; 214: 108907, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972242

ABSTRACT

The frequency and intensity of the occurrence of drought (D) events during winter are increasing in most areas of China. To explore the interactive effects of D and freezing temperature (F) on plants of endangered Cycas panzhihuaensis, some physiochemical characteristics and the lipid profile were determined. Drought and F stress had no or little impact on the traits of leaves, which, however, bleached following a combination of D and F treatment (DF). Drought treatment did not affect the chlorophyll fluorescence parameters and the flavonoid content of C. panzhihuaensis. Besides the increase in flavonoid content, a decrease of photochemical efficiency and an increase of heat dissipation were induced by both F and DF treatment, with the effects being greater in the latter treatment. The malondialdehyde content decreased significantly and the total antioxidant capacity increased significantly in the plants exposed to both D and DF treatments. The D treatment did not impact the amount of phospholipids but led to an accumulation of saccharolipids. Additionally, the amount of both phospholipids and saccharolipids remained unchanged following F treatment but decreased significantly following DF treatment compared with those of the control. The unsaturation level did not change significantly in most lipid classes of membrane glycerolipids following various stresses but increased significantly in phosphatidylserine, monogalactosylmonoacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol following D or both D and F treatments. Generally, plants of C. panzhihuaensis showed relatively strong tolerance to individual D stress, while D aggravated the F-induced damage, which was likely caused by the degradation of the membrane glycerolipids.


Subject(s)
Droughts , Freezing , Glycolipids/metabolism , Plant Leaves/metabolism , Malondialdehyde/metabolism , Cold Temperature , Chlorophyll/metabolism
3.
Sci Total Environ ; 921: 171099, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387588

ABSTRACT

To ensure the long-term performance of proton-exchange membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) have stringent requirements at high temperatures and humidities, as they may lose proton carriers. This issue poses a serious challenge to maintaining their proton conductivity and mechanical performance throughout their service life. Ionogels are ionic liquids (ILs) hybridized with another component (such as organic, inorganic, or organic-inorganic hybrid skeleton). This design is used to maintain the desirable properties of ILs (negligible vapor pressure, thermal stability, and non-flammability), as well as a high ionic conductivity and wide electrochemical stability window with low outflow. Ionogels have opened new routes for designing solid-electrolyte membranes, especially PEMs. This paper reviews recent research progress of ionogels in proton-exchange membranes, focusing on their electrochemical properties and proton transport mechanisms.

4.
Front Plant Sci ; 14: 1301560, 2023.
Article in English | MEDLINE | ID: mdl-38143575

ABSTRACT

Introduction: With the climate warming, the occurrence of freezing events is projected to increase in late spring and early autumn in the Northern Hemisphere. Observation of morphological traits showed that Cycas panzhihuaensis was more tolerant to unexpected freezing stress than C. bifida. Energy balance is crucial for plant tolerance to stress. Here, we aimed to determine whether the different responses of the two species to the unpredicted freezing stress were associated with the metabolism of energy and related substances. Methods: The effects of unexpected freezing temperatures on C. panzhihuaensis and C. bifida were studied by measuring chlorophyll fluorescence parameters, energy charge and the profile of nonstructural carbohydrates (NSC) and lipids. Results: C. panzhihuaensis exhibited higher stability of photosynthetic machinery than C. bifida under unpredicted freezing events. Significant interaction between species and treatments were observed in the energy charge, the level of NSC and its most components and the amount of most lipid categories and lipid classes. The decrease of soluble sugar and the increase of neutral glycerolipids at the early freezing stage, the accumulation of membrane glycerolipids at the late freezing stage and the continuous decrease of energy charge during the freezing period were the characteristics of C. panzhihuaensis responding to unexpected freezing stress. The degradation of membrane glycerolipids and the continuous decrease of soluble sugar during the freezing period and the accumulation of neutral glycerolipids and energy charge at the late freezing stage represented the characteristics of C. bifida responses. Discussion: The different freezing sensitivity between C. panzhihuaensis and C. bifida might be associated with the differential patterns of the metabolism of energy, NSC and lipids. C. panzhihuaensis possesses the potential to be introduced to the areas of higher latitudes and altitudes.

SELECTION OF CITATIONS
SEARCH DETAIL