Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Oncol ; 42(10): 1193-1201, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38381994

ABSTRACT

PURPOSE: The US Food and Drug Administration (FDA) approved elacestrant for the treatment of postmenopausal women or adult men with estrogen receptor-positive (ER+), human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor 1 (ESR1)-mutated advanced or metastatic breast cancer with disease progression after at least one line of endocrine therapy (ET). PATIENTS AND METHODS: Approval was based on EMERALD (Study RAD1901-308), a randomized, open-label, active-controlled, multicenter trial in 478 patients with ER+, HER2- advanced or metastatic breast cancer, including 228 patients with ESR1 mutations. Patients were randomly assigned (1:1) to receive either elacestrant 345 mg orally once daily (n = 239) or investigator's choice of ET (n = 239). RESULTS: In the ESR1-mut subgroup, EMERALD demonstrated a statistically significant improvement in progression-free survival (PFS) by blinded independent central review assessment (n = 228; hazard ratio [HR], 0.55 [95% CI, 0.39 to 0.77]; P value = .0005). Although the overall survival (OS) end point was not met, there was no trend toward a potential OS detriment (HR, 0.90 [95% CI, 0.63 to 1.30]) in the ESR1-mut subgroup. PFS also reached statistical significance in the intention-to-treat population (ITT, N = 478; HR, 0.70 [95% CI, 0.55 to 0.88]; P value = .0018). However, improvement in PFS in the ITT population was primarily attributed to results from patients in the ESR1-mut subgroup. More patients who received elacestrant experienced nausea, vomiting, and dyslipidemia. CONCLUSION: The approval of elacestrant in ER+, HER2- advanced or metastatic breast cancer was restricted to patients with ESR1 mutations. Benefit-risk assessment in the ESR1-mut subgroup was favorable on the basis of a statistically significant improvement in PFS in the context of an acceptable safety profile including no evidence of a potential detriment in OS. By contrast, the benefit-risk assessment in patients without ESR1 mutations was not favorable. Elacestrant is the first oral estrogen receptor antagonist to receive FDA approval for patients with ESR1 mutations.


Subject(s)
Breast Neoplasms , Tetrahydronaphthalenes , Adult , United States , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , United States Food and Drug Administration , Receptor, ErbB-2/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
2.
Chemistry ; 20(24): 7325-33, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24788403

ABSTRACT

Attempts to synthesize solvent-free MgB12H12 by heating various solvated forms (H2O, NH3, and CH3OH) of the salt failed because of the competition between desolvation and dehydrogenation. This competition has been studied by thermogravimetric analysis (TGA) and temperature-programmed desorption (TPD). Products were characterized by IR, solution- and solid-state NMR spectroscopy, elemental analysis, and single-crystal or powder X-ray diffraction analysis. For hydrated salts, thermal decomposition proceeded in three stages, loss of water to form first hexahydrated then trihydrated, and finally loss of water and hydrogen to form polyhydroxylated complexes. For partially ammoniated salts, two stages of thermal decomposition were observed as ammonia and hydrogen were released with weight loss first of 14 % and then 5.5 %. Thermal decomposition of methanolated salts proceeded through a single step with a total weight loss of 32 % with the release of methanol, methane, and hydrogen. All the gaseous products of thermal decomposition were characterized by using mass spectrometry. Residual solid materials were characterized by solid-state (11)B magic-angle spinning (MAS) NMR spectroscopy and X-ray powder diffraction analysis by which the molecular structures of hexahydrated and trihydrated complexes were solved. Both hydrogen and dihydrogen bonds were observed in structures of [Mg(H2O)6B12H12]⋅6 H2O and [Mg(CH3OH)6B12H12]⋅6 CH3OH, which were determined by single-crystal X-ray diffraction analysis. The structural factors influencing thermal decomposition behavior are identified and discussed. The dependence of dehydrogenation on the formation of dihydrogen bonds may be an important consideration in the design of solid-state hydrogen storage materials.

3.
Inorg Chem ; 51(24): 13430-6, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23215030

ABSTRACT

New convenient procedures for the preparation of ammonia monochloroborane (NH(3)BH(2)Cl) and cyclotriborazane [(BH(2)NH(2))(3)] are described. Crystal structures have been determined by single-crystal X-ray diffraction. Strong H···Cl···H bifurcated hydrogen bonding and weak N-H···H dihydrogen bonding are observed in the crystal structure of ammonia monochloroborane. When heated at 50 °C or under vacuum, ammonia monochloroborane decomposes to (NH(2)BHCl)(x), which was characterized by NMR, elemental analysis, and powder X-ray diffraction. Redetermination of the crystal structure of cyclotriborazane at low temperature by single-crystal X-ray diffraction analysis provides accurate hydrogen positions. Similar to ammonia borane, cyclotriborazane shows extensive dihydrogen bonding of N-H···H and B-H···H bonds with H(δ+)···H(δ-) interactions in the range of 2.00-2.34 Å.

4.
Chem Commun (Camb) ; 48(64): 7943-5, 2012 Aug 18.
Article in English | MEDLINE | ID: mdl-22760200

ABSTRACT

The crystal structures of an inorganic butane analogue, NH(3)BH(2)NH(2)BH(3) (DDAB), were determined using single crystal X-ray diffraction, revealing both anti and gauche conformations. The anti conformation is stabilized by intermolecular dihydrogen bonds in the crystal whereas two gauche conformations of DDAB observed in its 18-crown-6 adducts are stabilized by an intramolecular dihydrogen bond. The two gauche conformations show rotational isomerization but whether they are a pair of enantiomers is yet to be defined.

5.
Chemistry ; 18(12): 3490-2, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22359312

ABSTRACT

DADB synthesis: The diammoniate of diborane (DADB) was synthesized in a new metathesis reaction between the diammoniate of monochloroborane and potassium borohydride in liquid ammonia. (1)H and (11)B NMR spectra of DADB are reported. The stability in THF was examined by variable-temperature (11)B NMR spectroscopy.

6.
Inorg Chem ; 49(18): 8185-7, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20715786

ABSTRACT

A simple and efficient way to synthesize unsolvated sodium octahydrotriborate has been developed. This method avoids the use of dangerous starting materials and significantly simplifies the reaction setup, thus enabling convenient large-scale synthesis. The structure of the unsolvated compound has been determined through powder X-ray diffraction.

7.
Acta Crystallogr C ; 66(Pt 1): m1-3, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20048411

ABSTRACT

The asymmetric unit of the title salt, 2NH(4)(+).B(10)H(10)(2-).1.5H(2)O or (NH(4))(2)B(10)H(10).1.5H(2)O, (I), contains two B(10)H(10)(2-) anions, four NH(4)(+) cations and three water molecules. (I) was converted to the anhydrous compound (NH(4))(2)B(10)H(10), (II), by heating to 343 K and its X-ray powder pattern was obtained. The extended structure of (I) shows two types of hydrogen-bonding interactions (N-H...O and O-H...O) and two types of dihydrogen-bonding interactions (N-H...H-B and O-H...H-B). The N-H...H-B dihydrogen bonding forms a two-dimensional sheet structure, and hydrogen bonding (N-H...O and O-H...O) and O-H...H-B dihydrogen bonding link the respective sheets to form a three-dimensional polymeric network structure. Compound (II) has been shown to form a polymer with the accompanying loss of H(2) at a faster rate than (NH(4))(2)B(12)H(12) and we believe that this is due to the stronger dihydrogen-bonding interactions shown in the hydrate (I).

8.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 5): m575, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-21579056

ABSTRACT

The structure of the title compound, [Mg(AlH(4))(2)(C(4)H(8)O)(4)], has been redetermined at 150 K. The Mg(II) ion is hexa-coordinated to four tetra-hydro-furan (THF) ligands, and two AlH(4) (-) anions through bridging H atoms. The Al-H distances are more precise compared to those previously determined [Nöth et al. (1995 ▶). Chem. Ber. 128, 999-1006; Fichtner & Fuhr (2002 ▶). J. Alloys Compd, 345, 386-396]. The mol-ecule has twofold rotation symmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...