Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
npj Quantum Inf ; 9(1): 81, 2023.
Article in English | MEDLINE | ID: mdl-38726362

ABSTRACT

Noise is an ever-present challenge to the creation and preservation of fragile quantum states. Recent work suggests that spatial noise correlations can be harnessed as a resource for noise mitigation via the use of spectator qubits to measure environmental noise. In this work we generalize this concept from spectator qubits to a spectator mode: a photonic mode which continuously measures spatially correlated classical dephasing noise and applies a continuous correction drive to frequency-tunable data qubits. Our analysis shows that by using many photon states, spectator modes can surpass many of the quantum measurement constraints that limit spectator qubit approaches. We also find that long-time data qubit dephasing can be arbitrarily suppressed, even for white noise dephasing. Further, using a squeezing (parametric) drive, the error in the spectator mode approach can exhibit Heisenberg-limited scaling in the number of photons used. We also show that spectator mode noise mitigation can be implemented completely autonomously using engineered dissipation. In this case no explicit measurement or processing of a classical measurement record is needed. Our work establishes spectator modes as a potentially powerful alternative to spectator qubits for noise mitigation.

2.
J Occup Environ Hyg ; 19(12): 730-741, 2022 12.
Article in English | MEDLINE | ID: mdl-36219680

ABSTRACT

With the advent of new sensing technologies and robust field-deployable analyzers, monitoring approaches can now generate valuable hazard information directly in the workplace. This is the case for monitoring respirable dust and respirable crystalline silica concentration levels. Estimating the quartz amount of a respirable dust sample by nondestructive analysis can be carried out using portable Fourier transform infrared spectroscopy (FTIR) units. Real-time respirable dust monitors, combined with small video cameras, allow advanced assessments using the Helmet-CAM methodology. These two field-based monitoring approaches, developed by the National Institute for Occupational Safety and Health (NIOSH), have been trialed in a sandstone quarry. Twenty-six Helmet-CAM sessions were conducted, and forty-one dust samples were collected around the quarry and analyzed on-site during two events. The generated data generated were used to characterize concentration levels for the monitored areas and workers, to identify good practices, and to illustrate activities that could be improved with additional engineered control technologies. Laboratory analysis of the collected samples complemented the field finding and provided an assessment of the performance of the field-based techniques. Only a fraction of the real-time respirable dust monitoring sessions data could be corrected with laboratory analysis. The average correction factor ratio was 5.0. Nevertheless, Helmet-CAM results provided valuable information for each session. The field-based quartz monitoring approach overestimated the concentration by a factor of 1.8, but it successfully assessed the quartz concentration trends in the quarry. The data collected could be used for the determination of a quarry calibration factor for future events. The quartz content in the dust was found to vary from 14% to 100%, and this indicates the need for multiple techniques in the characterization of respirable dust and quartz concentration and exposure. Overall, this study reports the importance of the adoption of field-based monitoring techniques when combined with a proper understanding and knowledge of the capabilities and limitations of each technique.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Humans , Silicon Dioxide/analysis , Dust/analysis , Quartz/analysis , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Inhalation Exposure/prevention & control , Inhalation Exposure/analysis , Environmental Monitoring/methods , Air Pollutants, Occupational/analysis
3.
Sci Adv ; 7(48): eabj1916, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34826241

ABSTRACT

We present a mechanism that harnesses extremely weak Kerr-type nonlinearities in a single driven cavity to deterministically generate single-photon Fock states and more general photon-blockaded states. Our method is effective even for nonlinearities that are orders-of-magnitude smaller than photonic loss. It is also completely distinct from so-called unconventional photon blockade mechanisms, as the generated states are non-Gaussian, exhibit a sharp cutoff in their photon number distribution, and can be arbitrarily close to a single-photon Fock state. Our ideas require only standard linear and parametric drives and are hence compatible with a variety of different photonic platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...