Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Am J Ophthalmol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740237

ABSTRACT

AIM: This study evaluates the performance of a multitrait polygenic risk score (PRS) in an independent cohort to predict incident or progression of keratoconus. DESIGN: Prospective cross-sectional and cohort study METHODS: Setting: Single-centre; Study population: 1,478 community-based young adults (18-30 years; 51% female), including 609 (52% female) who returned for an 8-year follow-up; Observation procedures: Scheimpflug imaging (Pentacam, Oculus), genotyping and development of a multitrait PRS previously validated to predict keratoconus in older adults.; Main outcome measure: Belin/Ambrόsio enhanced ectasia display (BAD-D) score and keratoconus, defined as BAD-D ≥2.6, were each analysed against the PRS using linear and logistic regression, respectively. RESULTS: Prevalence of keratoconus was 2.5% (95% confidence interval [CI]=1.9-3.6) in the cross-sectional cohort. Each z-score increase in PRS was associated with worse BAD-D z-score by 0.13 (95%CI= 0.08-0.18) and 1.6 increased odds of keratoconus. The 8-year keratoconus incidence was 2.6% (95%CI=1.3-4.0). Participants in the highest PRS decile were more likely to have incident keratoconus compared to the rest of the cohort (odds ratio= 3.85, 95%CI=1.21-12.22). For each z-score increase in PRS, 8-year change in BAD-D z-score worsened by 0.11 (95%CI=0.04 to 0.17). CONCLUSION: A PRS for keratoconus could be useful in predicting incident keratoconus and progression, demonstrating its potential utility in clinical settings to identify patients at high risk of post-surgery ectasia or those who may benefit most from keratoconus intervention.

2.
Clin Exp Ophthalmol ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38400607

ABSTRACT

BACKGROUND: A rebound in myopia progression following cessation of atropine eyedrops has been reported, yet there is limited data on the effects of stopping 0.01% atropine compared to placebo control. This study tested the hypothesis that there is minimal rebound myopia progression after cessation of 0.01% atropine eyedrops, compared to a placebo. METHODS: Children with myopia (n = 153) were randomised to receive 0.01% atropine eyedrops or a placebo (2:1 ratio) daily at bedtime during the 2-year treatment phase of the study. In the third year (wash-out phase), all participants ceased eyedrop instillation. Participants underwent an eye examination every 6 months, including measurements of spherical equivalent (SphE) after cycloplegia and axial length (AL). Changes in the SphE and AL during the wash-out phase and throughout the 3 years of the study (treatment + wash-out phase) were compared between the treatment and control groups. RESULTS: During the 1-year wash-out phase, SphE and AL progressed by -0.41D (95% CI = -0.33 to -0.22) and +0.20 mm (95% CI = -0.46 to -0.36) in the treatment group compared to -0.28D (95% CI = 0.11 to 0.16) and +0.13 mm (95% CI = 0.18 to 0.21) in the control group. Progression in the treatment group was significantly faster than in the control group (p = 0.016 for SphE and <0.001 for AL). Over the 3-year study period, the cumulative myopia progression was similar between the atropine and the control groups. CONCLUSIONS: These findings showed evidence of rapid myopia progression following cessation of 0.01% atropine. Further investigations are warranted to ascertain the long-term effects of atropine eyedrops.

3.
Eye (Lond) ; 38(7): 1333-1341, 2024 May.
Article in English | MEDLINE | ID: mdl-38200321

ABSTRACT

BACKGROUND/OBJECTIVES: Axial length, a key measurement in myopia management, is not accessible in many settings. We aimed to develop and assess machine learning models to estimate the axial length of young myopic eyes. SUBJECTS/METHODS: Linear regression, symbolic regression, gradient boosting and multilayer perceptron models were developed using age, sex, cycloplegic spherical equivalent refraction (SER) and corneal curvature. Training data were from 8135 (28% myopic) children and adolescents from Ireland, Northern Ireland and China. Model performance was tested on an additional 300 myopic individuals using traditional metrics alongside the estimated axial length vs age relationship. Linear regression and receiver operator characteristics (ROC) curves were used for statistical analysis. The contribution of the effective crystalline lens power to error in axial length estimation was calculated to define the latter's physiological limits. RESULTS: Axial length estimation models were applicable across all testing regions (p ≥ 0.96 for training by testing region interaction). The linear regression model performed best based on agreement metrics (mean absolute error [MAE] = 0.31 mm, coefficient of repeatability = 0.79 mm) and a smooth, monotonic estimated axial length vs age relationship. This model was better at identifying high-risk eyes (axial length >98th centile) than SER alone (area under the curve 0.89 vs 0.79, respectively). Without knowing lens power, the calculated limits of axial length estimation were 0.30 mm for MAE and 0.75 mm for coefficient of repeatability. CONCLUSIONS: In myopic eyes, we demonstrated superior axial length estimation with a linear regression model utilising age, sex and refractive metrics and showed its clinical utility as a risk stratification tool.


Subject(s)
Axial Length, Eye , Myopia , Refraction, Ocular , Humans , Myopia/physiopathology , Myopia/diagnosis , Male , Female , Axial Length, Eye/pathology , Axial Length, Eye/diagnostic imaging , Adolescent , Child , Refraction, Ocular/physiology , ROC Curve , Biometry/methods , Young Adult , Lens, Crystalline/physiopathology , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Linear Models , Cornea/pathology , Cornea/diagnostic imaging , Cornea/physiopathology
4.
Ophthalmic Physiol Opt ; 44(2): 258-269, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38062894

ABSTRACT

PURPOSE: This retrospective analysis of electronic medical record (EMR) data investigated the natural history of myopic progression in children from optometric practices in Ireland. METHODS: The analysis was of myopic patients aged 7-17 with multiple visits and not prescribed myopia control treatment. Sex- and age-specific population centiles for annual myopic progression were derived by fitting a weighted cubic spline to empirical quantiles. These were compared to progression rates derived from control group data obtained from 17 randomised clinical trials (RCTs) for myopia. Linear mixed models (LMMs) were used to allow comparison of myopia progression rates against outputs from a predictive online calculator. Survival analysis was performed to determine the intervals at which a significant level of myopic progression was predicted to occur. RESULTS: Myopia progression was highest in children aged 7 years (median: -0.67 D/year) and progressively slowed with increasing age (median: -0.18 D/year at age 17). Female sex (p < 0.001), a more myopic SER at baseline (p < 0.001) and younger age (p < 0.001) were all found to be predictive of faster myopic progression. Every RCT exhibited a mean progression higher than the median centile observed in the EMR data, while clinic-based studies more closely matched the median progression rates. The LMM predicted faster myopia progression for patients with higher baseline myopia levels, in keeping with previous studies, which was in contrast to an online calculator that predicted slower myopia progression for patients with higher baseline myopia. Survival analysis indicated that at a recall period of 12 months, myopia will have progressed in between 10% and 70% of children, depending upon age. CONCLUSIONS: This study produced progression centiles of untreated myopic children, helping to define the natural history of untreated myopia. This will enable clinicians to better predict both refractive outcomes without treatment and monitor treatment efficacy, particularly in the absence of axial length data.


Subject(s)
Myopia , Adolescent , Child , Female , Humans , Disease Progression , Myopia/therapy , Refraction, Ocular , Retrospective Studies , Treatment Outcome , Vision Tests , Male , Randomized Controlled Trials as Topic
5.
Acta Ophthalmol ; 102(3): e245-e256, 2024 May.
Article in English | MEDLINE | ID: mdl-37694816

ABSTRACT

PURPOSE: The Myopia Outcome Study of Atropine in Children (MOSAIC) is an investigator-led, double-masked, randomized controlled trial investigating the efficacy and safety of 0.01% atropine eye drops for managing myopia progression in a predominantly White, European population. METHODS: Children aged 6-16 years with myopia were randomly allocated 2:1 to nightly 0.01% atropine or placebo eye drops in both eyes for 2 years. The primary outcome was cycloplegic spherical equivalent (SE) progression at 24 months. Secondary outcomes included axial length (AL) change, safety and acceptability. Linear mixed models with random intercepts were used for statistical analyses. RESULTS: Of 250 participants enrolled, 204 (81.6%) completed the 24-month visit (136 (81.4%) treatment, 68 (81.9%) placebo). Baseline characteristics, drop-out and adverse event rates were similar between treatment and control groups. At 24 months, SE change was not significantly different between 0.01% atropine and placebo groups (effect = 0.10 D, p = 0.07), but AL growth was lower in the 0.01% atropine group, compared to the placebo group (-0.07 mm, p = 0.007). Significant treatment effects on SE (0.14 D, p = 0.049) and AL (-0.11 mm, p = 0.002) were observed in children of White, but not non-White (SE = 0.05 D, p = 0.89; AL = 0.008 mm, p = 0.93), ethnicity at 24 months. A larger treatment effect was observed in subjects least affected by COVID-19 restrictions (SE difference = 0.37 D, p = 0.005; AL difference = -0.17 mm, p = 0.001). CONCLUSIONS: Atropine 0.01% was safe, well-tolerated and effective in slowing axial elongation in this European population. Treatment efficacy varied by ethnicity and eye colour, and potentially by degree of COVID-19 public health restriction exposure during trial participation.


Subject(s)
COVID-19 , Myopia , Child , Humans , Atropine , Myopia/diagnosis , Myopia/drug therapy , Myopia/epidemiology , Refraction, Ocular , Treatment Outcome , Axial Length, Eye , Ophthalmic Solutions , Disease Progression , COVID-19/epidemiology
6.
Ophthalmic Physiol Opt ; 44(2): 280-291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38037443

ABSTRACT

BACKGROUND: To investigate the short-term effects of cyclopentolate and tropicamide eyedrops on choroidal thickness (ChT) in myopic children using placebo or low-dose atropine eyedrops. METHODS: The analysis included 242 myopic individuals (7-19 years) enrolled in two randomised placebo-controlled clinical trials of low-dose atropine eyedrops. Cycloplegia was induced using either one drop of 1% cyclopentolate (n = 161), two drops of 1% cyclopentolate (n = 32) or two drops of 1% tropicamide (n = 49). ChT measurements were taken using swept-source optical coherence tomography before and 30 min after administering the cycloplegic eye drops. A subset of 51 participants underwent test-retest measurements prior to cycloplegia. RESULTS: Mean changes in subfoveal ChT after two drops of tropicamide and one and two drops of cyclopentolate were -2.5 µm (p = 0.10), -4.3 µm (p < 0.001) and -9.6 µm (p < 0.001), respectively. Subfoveal ChT changes after one and two drops of cyclopentolate were significantly greater than the test-retest changes (test-retest mean change: -3.1 µm; p < 0.05), while the tropicamide group was not significantly different (p = 0.64). Choroidal thinning post-cyclopentolate was not significantly different between atropine and placebo treatment groups (p > 0.05 for all macular locations). The coefficient of repeatability (CoR) in the tropicamide group (range: 8.2-14.4 µm) was similar to test-retest (range: 7.5-12.2 µm), whereas greater CoR values were observed in the cyclopentolate groups (one drop: range: 10.8-15.3 µm; two drops: range: 12.2-24.6 µm). CONCLUSIONS: Cyclopentolate eye drops caused dose-dependent choroidal thinning and increased variation in pre- to post-cycloplegia measurements compared with test-retest variability, whereas tropicamide did not. These findings have practical implications for ChT measurements when cyclopentolate is used, particularly for successive measurements.


Subject(s)
Myopia , Presbyopia , Child , Humans , Atropine , Cyclopentolate , Mydriatics , Myopia/drug therapy , Ophthalmic Solutions , Tropicamide/pharmacology , Tropicamide/therapeutic use , Adolescent , Young Adult
7.
Invest Ophthalmol Vis Sci ; 64(14): 28, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37982764

ABSTRACT

Purpose: Changes in refractive error during young adulthood is common yet risk factors at this age are largely unexplored. This study explored risk factors for these changes, including gene-environmental interactions. Methods: Spherical equivalent refraction (SER) and axial length (AL) for 624 community-based adults were measured at 20 (baseline) and 28 years old. Participants were genotyped and their polygenic scores (PGS) for refractive error calculated. Self-reported screen time (computer, television, and mobile devices) from 20 to 28 years old were collected prospectively and longitudinal trajectories were generated. Past sun exposure was quantified using conjunctival ultraviolet autofluorescence (CUVAF) area. Results: Median change in SER and AL were -0.023 diopters (D)/year (interquartile range [IQR] = -0.062 to -0.008) and +0.01 mm/year (IQR = 0.000 to 0.026), respectively. Sex, baseline myopia, parental myopia, screen time, CUVAF, and PGS were significantly associated with myopic shift. Collectively, these factors accounted for approximately 20% of the variance in refractive error change, with screen time, CUVAF, and PGS each explaining approximately 1% of the variance. Four trajectories for total screen time were found: "consistently low" (n = 148), "consistently high" (n = 250), "consistently very high" (n = 76), and "increasing" (n = 150). Myopic shift was faster in those with "consistently high" or "consistently very high" screen time compared to "consistently-low" (P ≤ 0.031). For each z-score increase in PGS, changes in SER and AL increased by -0.005 D/year and 0.002 mm/year (P ≤ 0.045). Of the three types of screen time, only computer time was associated with myopic shift (P ≤ 0.040). There was no two- or three-way interaction effect between PGS, CUVAF, or screen time (P ≥ 0.26). Conclusions: Higher total or computer screen time, less sun exposure, and genetic predisposition are each independently associated with greater myopic shifts during young adulthood. Given that these factors explained only a small amount of the variance, there are likely other factors driving refractive error change during young adulthood.


Subject(s)
Myopia , Refractive Errors , Adult , Humans , Young Adult , Genetic Predisposition to Disease , Screen Time , Sunlight/adverse effects , Refractive Errors/genetics , Myopia/genetics , Conjunctiva
8.
Transl Vis Sci Technol ; 12(8): 14, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37594450

ABSTRACT

Purpose: Treatments are available to slow myopic axial elongation. Understanding normal axial length (AL) distributions will assist clinicians in choosing appropriate treatment for myopia. We report the distribution of AL in Australians of different age groups and refractive errors. Methods: Retrospectively collected spherical equivalent refraction (SER) and AL data of 5938 individuals aged 5 to 89 years from 8 Australian studies were included. Based on the SER, participants were classified as emmetropes, myopes, and hyperopes. Two regression model parameterizations (piece-wise and restricted cubic splines [RCS]) were applied to the cross-sectional data to analyze the association between age and AL. These results were compared with longitudinal data from the Raine Study where the AL was measured at age 20 (baseline) and 28 years. Results: A piece-wise regression model (with 1 knot) showed that myopes had a greater increase in AL before 18 years by 0.119 mm/year (P < 0.001) and after 18 years by 0.011 mm/year (P < 0.001) compared to emmetropes and hyperopes, with the RCS model (with 3 knots) showing similar results. The longitudinal data from the Raine Study revealed that, when compared to emmetropes, only myopes showed a significant change in the AL in young adulthood (by 0.016 mm/year, P < 0.001). Conclusions: The AL of myopic eyes increases more rapidly in childhood and slightly in early adulthood. Further studies of longitudinal changes in AL, particularly in childhood, are required to guide myopia interventions. Translational Relevance: The axial length of myopic eyes increases rapidly in childhood, and there is a minimal increase in the axial length in non-myopic eyes after 18 years of age.


Subject(s)
Emmetropia , Eye , Hyperopia , Myopia , Refractive Errors , Adolescent , Adult , Humans , Young Adult , Australia/epidemiology , Cross-Sectional Studies , Hyperopia/diagnosis , Hyperopia/epidemiology , Myopia/diagnosis , Myopia/epidemiology , Refractive Errors/epidemiology , Retrospective Studies , Child, Preschool , Child , Middle Aged , Aged , Aged, 80 and over , Organ Size , Eye/growth & development , Eye/pathology
9.
BMJ Open Ophthalmol ; 8(1)2023 01.
Article in English | MEDLINE | ID: mdl-37278434

ABSTRACT

To facilitate the integration of eye care into universal health coverage, the WHO is developing a Package of Eye Care Interventions (PECI). Development of the PECI involves the identification of evidence-based interventions from relevant clinical practice guidelines (CPGs) for uveitis.A systematic review of CPGs published on uveitis between 2010 and March 2020 was conducted. CPGs passing title and abstract and full-text screening were evaluated using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) tool and data on recommended interventions extracted using a standard data extraction sheet.Of 56 CPGs identified as potentially relevant from the systematic literature search, 3 CPGs underwent data extraction following the screening stages and appraisal with the AGREE II tool. These CPGs covered screening for, monitoring and treating juvenile idiopathic arthritis (JIA)-associated uveitis, the use of adalimumab and dexamethasone in treating non-infectious uveitis, and a top-level summary of assessment, differential diagnosis and referral recommendations for uveitis, aimed at primary care practitioners. Many of the recommendations were based on expert opinion, though some incorporated clinical study and randomised controlled trial data.There is currently sparse coverage of the spectrum of disease caused by uveitis within CPGs. This may partially be due to the large number of conditions with diverse causes and clinical presentations covered by the umbrella term uveitis, which makes numerous sets of guidelines necessary. The limited pool of CPGs to select from has implications for clinicians seeking guidance on clinical care strategies for uveitis.


Subject(s)
Arthritis, Juvenile , Uveitis , Humans , Uveitis/diagnosis , Adalimumab/therapeutic use , Arthritis, Juvenile/complications
10.
Ocul Surf ; 28: 213-252, 2023 04.
Article in English | MEDLINE | ID: mdl-37062428

ABSTRACT

Eye strain when performing tasks reliant on a digital environment can cause discomfort, affecting productivity and quality of life. Digital eye strain (the preferred terminology) was defined as "the development or exacerbation of recurrent ocular symptoms and/or signs related specifically to digital device screen viewing". Digital eye strain prevalence of up to 97% has been reported, due to no previously agreed definition/diagnostic criteria and limitations of current questionnaires which fail to differentiate such symptoms from those arising from non-digital tasks. Objective signs such as blink rate or critical flicker frequency changes are not 'diagnostic' of digital eye strain nor validated as sensitive. The mechanisms attributed to ocular surface disease exacerbation are mainly reduced blink rate and completeness, partial/uncorrected refractive error and/or underlying binocular vision anomalies, together with the cognitive demand of the task and differences in position, size, brightness and glare compared to an equivalent non-digital task. In general, interventions are not well established; patients experiencing digital eye strain should be provided with a full refractive correction for the appropriate working distances. Improving blinking, optimizing the work environment and encouraging regular breaks may help. Based on current, best evidence, blue-light blocking interventions do not appear to be an effective management strategy. More and larger clinical trials are needed to assess artificial tear effectiveness for relieving digital eye strain, particularly comparing different constituents; a systematic review within the report identified use of secretagogues and warm compress/humidity goggles/ambient humidifiers as promising strategies, along with nutritional supplementation (such as omega-3 fatty acid supplementation and berry extracts).


Subject(s)
Asthenopia , Dry Eye Syndromes , Eye Diseases , Humans , Quality of Life , Asthenopia/etiology , Asthenopia/diagnosis , Tears , Life Style , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/complications
11.
Ocul Surf ; 28: 200-212, 2023 04.
Article in English | MEDLINE | ID: mdl-37054912

ABSTRACT

Evidence-based practice is a dominant paradigm in healthcare that emphasizes the importance of ensuring the translation of the best available, relevant research evidence into practice. An Evidence Quality Subcommittee was established to provide specialized methodological support and expertise to promote rigorous and evidence-based approaches for the Tear Film and Ocular Surface Society (TFOS) Lifestyle Epidemic reports. The present report describes the purpose, scope, and activity of the Evidence Quality Subcommittee in the undertaking of high-quality narrative-style literature reviews, and leading prospectively registered, reliable systematic reviews of high priority research questions, using standardized methods for each topic area report. Identification of predominantly low or very low certainty evidence across the eight systematic reviews highlights a need for further research to define the efficacy and/or safety of specific lifestyle interventions on the ocular surface, and to clarify relationships between certain lifestyle factors and ocular surface disease. To support the citation of reliable systematic review evidence in the narrative review sections of each report, the Evidence Quality Subcommittee curated topic-specific systematic review databases and relevant systematic reviews underwent standardized reliability assessment. Inconsistent methodological rigor was noted in the published systematic review literature, emphasizing the importance of internal validity assessment. Based on the experience of implementing the Evidence Quality Subcommittee, this report makes suggestions for incorporation of such initiatives in future international taskforces and working groups. Content areas broadly relevant to the activity of the Evidence Quality Subcommittee, including the critical appraisal of research, clinical evidence hierarchies (levels of evidence), and risk of bias assessment, are also outlined.


Subject(s)
Evidence-Based Practice , Systematic Reviews as Topic , Reproducibility of Results
12.
Optom Vis Sci ; 100(1): 57-66, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36705715

ABSTRACT

SIGNIFICANCE: This study addresses the lack of choroidal thickness (ChT) profile information available in European children and provides a baseline for further evaluation of longitudinal changes in ChT profiles in myopic children as a potential biomarker for myopia treatment and identifying children at risk of myopic progression. PURPOSE: This study aimed to investigate ChT profiles and associated factors in myopic children. METHODS: Baseline data of 250 myopic children aged 6 to 16 years in the Myopia Outcome Study of Atropine in Children clinical trial were analyzed. Choroidal thickness images were obtained using swept-source optical coherence tomography (DRI-OCT Triton Plus; Topcon Corporation, Tokyo, Japan). The macula was divided into nine Early Treatment of Diabetic Retinopathy Study locations with diameters of 1, 3, and 6 mm corresponding to the central fovea, parafoveal, and perifoveal regions. Multiple linear regression models were used to investigate determinants of ChT. RESULTS: Choroidal thickness varied across the macular Early Treatment of Diabetic Retinopathy Study locations ( P < .001): thickest in the perifoveal superior region (mean ± standard deviation, 249.0 ± 60.8 µm) and thinnest in the perifoveal nasal region (155.1 ± 50.3 µm). On average, ChT was greater in all parafoveal (231.8 ± 57.8 µm) compared with perifoveal (218.1 ± 49.1 µm) regions except superiorly where the ChT was greater in the perifoveal region. Longer axial length and higher myopic spherical equivalent refraction were consistently associated with thinner ChT at all locations in the multiple linear regression models. Asian race was significantly associated with thinner ChT only at parafoveal and perifoveal superior regions after Bonferroni correction ( P = .004 and P = .001, respectively). CONCLUSIONS: Choroidal thickness was thinnest in the nasal macular region and varied systematically across all macular locations, with axial length and spherical equivalent refraction being the strongest determinants of ChT. Longitudinal evidence will need to evaluate whether any differences in ChT profiles are predictive of myopic progression and to determine the role of ChT measurements in identifying myopic children most in need of myopia control treatment.


Subject(s)
Diabetic Retinopathy , Macula Lutea , Myopia , Child , Humans , Choroid , Fovea Centralis , Myopia/diagnosis , Myopia/therapy , Myopia/complications , Refraction, Ocular , Tomography, Optical Coherence/methods
14.
Br J Ophthalmol ; 107(5): 614-620, 2023 05.
Article in English | MEDLINE | ID: mdl-34815236

ABSTRACT

BACKGROUND: Conjunctival ultraviolet autofluorescence (CUVAF) is a method of detecting conjunctival damage related to ultraviolet radiation exposure. In cross-sectional studies, CUVAF area is positively associated with self-reported time spent outdoors and pterygium and negatively associated with myopia; however, longitudinal studies are scarce. AIMS: To use a novel deep learning-based tool to assess 8-year change in CUVAF area in young adults, investigate factors associated with this change and identify the number of new onset pterygia. METHODS: A deep learning-based CUVAF tool was developed to measure CUVAF area. CUVAF area and pterygium status were assessed at three study visits: baseline (participants were approximately 20 years old) and at 7-year and 8-year follow-ups. Participants self-reported sun protection behaviours and ocular history. RESULTS: CUVAF data were available for 1497 participants from at least one study visit; 633 (43%) participants had complete CUVAF data. Mean CUVAF areas at baseline and the 7-year and 8-year follow-ups were 48.4, 39.3 and 37.7 mm2, respectively. There was a decrease in mean CUVAF area over time (change in total CUVAF area=-0.96 mm2 per year (95% CI: -1.07 to -0.86)). For participants who wore sunglasses ≥1/2 of the time, CUVAF area decreased by an additional -0.42 mm2 per year (95% CI: -0.72 to -0.12) on average. Fourteen (1.5%) participants developed a pterygium. CONCLUSIONS: In this young adult cohort, CUVAF area declined over an 8-year period. Wearing sunglasses was associated with a faster reduction in CUVAF area. Deep learning-based models can assist in accurate and efficient measurement of CUVAF area.


Subject(s)
Pterygium , Young Adult , Humans , Adult , Pterygium/diagnosis , Ultraviolet Rays/adverse effects , Sunlight/adverse effects , Cross-Sectional Studies , Optical Imaging/methods , Conjunctiva
15.
Ophthalmic Epidemiol ; 30(3): 213-220, 2023 06.
Article in English | MEDLINE | ID: mdl-35417274

ABSTRACT

BACKGROUND: In response to the recommendations of the World Health Organization (WHO) World report on vision, the WHO is developing a Package of Eye Care Interventions (PECI) to support the integration of eye care into health systems within countries. This study was done to systematically review clinical practice guidelines (CPGs) related to age-related macular degeneration (AMD) to provide evidence-based recommendations. METHODS: All AMD-related CPGs published between 2010 and 2020 were reviewed and evaluated using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) tool. RESULTS: Of 3778 CPGs identified, 48 underwent full-text screening and eight underwent quality appraisal. Five National Institute for Health and Care Excellence (NICE, UK) guidelines for AMD were finally selected for data extraction. Intravitreal anti-vascular endothelial growth factor (VEGF) treatment was strongly recommended for advanced, active neovascular AMD based on high-quality evidence. Photodynamic therapy and laser photocoagulation were not recommended as an adjunct to anti-VEGF therapy as first-line treatment for AMD. Recommendations on other interventions, including epiretinal brachytherapy, miniature lens system implantation, and limited macular translocation, were weak and evidence mostly came from low-quality case series studies. Hence these interventions were recommended to be used only with special arrangements or research. Existing evidence on treating geographic atrophy was limited, an implantable miniature telescope might be an effective intervention to improve vision but was still under investigation. DISCUSSION: Current CPGs recommend anti-VEGF therapy for patients with late active neovascular AMD, while other interventions should be used with caution and further researches are warranted.


Subject(s)
Geographic Atrophy , Wet Macular Degeneration , Humans , Angiogenesis Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A , Visual Acuity , Wet Macular Degeneration/drug therapy , Geographic Atrophy/drug therapy
16.
JAMA Ophthalmol ; 140(12): 1229-1238, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36394836

ABSTRACT

Importance: Despite persistent inequalities in access to eye care services globally, guidance on a set of recommended, evidence-based eye care interventions to support country health care planning has not been available. To overcome this barrier, the World Health Organization (WHO) Package of Eye Care Interventions (PECI) has been developed. Objective: To describe the key outcomes of the PECI development. Evidence Review: A standardized stepwise approach that included the following stages: (1) selection of priority eye conditions by an expert panel after reviewing epidemiological evidence and health facility data; (2) identification of interventions and related evidence for the selected eye conditions from a systematic review of clinical practice guidelines (CPGs); stage 2 included a systematic literature search, screening of title and abstracts (excluding articles that were not relevant CPGs), full-text review to assess disclosure of conflicts of interest and affiliations, quality appraisal, and data extraction; (3) expert review of the evidence extracted in stage 2, identification of missed interventions, and agreement on the inclusion of essential interventions suitable for implementation in low- and middle-income resource settings; and (4) peer review. Findings: Fifteen priority eye conditions were chosen. The literature search identified 3601 articles. Of these, 469 passed title and abstract screening, 151 passed full-text screening, 98 passed quality appraisal, and 87 were selected for data extraction. Little evidence (≤1 CPG identified) was available for pterygium, keratoconus, congenital eyelid disorders, vision rehabilitation, myopic macular degeneration, ptosis, entropion, and ectropion. In stage 3, domain-specific expert groups voted to include 135 interventions (57%) of a potential 235 interventions collated from stage 2. After synthesis across all interventions and eye conditions, 64 interventions (13 health promotion and education, 6 screening and prevention, 38 treatment, and 7 rehabilitation) were included in the PECI. Conclusions and Relevance: This systematic review of CPGs for priority eye conditions, followed by an expert consensus procedure, identified 64 essential, evidence-based, eye care interventions that are required to achieve universal eye health coverage. The review identified some important gaps, including a paucity of high-quality, English-language CPGs, for several eye diseases and a dearth of evidence-based recommendations on eye health promotion and prevention within existing CPGs.


Subject(s)
Health Promotion , Universal Health Insurance , Humans , World Health Organization
17.
Clin Exp Ophthalmol ; 50(9): 1001-1012, 2022 12.
Article in English | MEDLINE | ID: mdl-36054556

ABSTRACT

BACKGROUND: To test the hypothesis that 0.01% atropine eyedrops are a safe and effective myopia-control approach in Australian children. METHODS: Children (6-16 years; 49% Europeans, 18% East Asian, 22% South Asian, and 12% other/mixed ancestry) with documented myopia progression were enrolled into this single-centre randomised, parallel, double-masked, placebo-controlled trial and randomised to receive 0.01% atropine (n = 104) or placebo (n = 49) eyedrops (2:1 ratio) instilled nightly over 24 months (mean index age = 12.2 ± 2.5 and 11.2 ± 2.8 years, respectively). Outcome measures were the changes in spherical equivalent (SE) and axial length (AL) from baseline. RESULTS: At 12 months, the mean SE and AL change from baseline were -0.31D (95% confidence interval [CI] = -0.39 to -0.22) and 0.16 mm (95%CI = 0.13-0.20) in the atropine group and -0.53D (95%CI = -0.66 to -0.40) and 0.25 mm (95%CI = 0.20-0.30) in the placebo group (group difference p ≤ 0.01). At 24 months, the mean SE and AL change from baseline was -0.64D (95%CI = -0.73 to -0.56) and 0.34 mm (95%CI = 0.30-0.37) in the atropine group, and -0.78D (95%CI = -0.91 to -0.65) and 0.38 mm (95%CI = 0.33-0.43) in the placebo group. Group difference at 24 months was not statistically significant (p = 0.10). At 24 months, the atropine group had reduced accommodative amplitude and pupillary light response compared to the placebo group. CONCLUSIONS: In Australian children, 0.01% atropine eyedrops were safe, well-tolerated, and had a modest myopia-control effect, although there was an apparent decrease in efficacy between 18 and 24 months, which is likely driven by a higher dropout rate in the placebo group.


Subject(s)
Atropine , Myopia , Child , Humans , Adolescent , Ophthalmic Solutions , Australia , Myopia/drug therapy , Refraction, Ocular , Disease Progression
18.
Ophthalmic Physiol Opt ; 42(6): 1232-1252, 2022 11.
Article in English | MEDLINE | ID: mdl-35959749

ABSTRACT

PURPOSE: To provide contemporary and future estimates of childhood myopia prevalence in Africa. METHODS: A systematic online literature search was conducted for articles on childhood (≤18 years) myopia (spherical equivalent [SE] ≤ -0.50D; high myopia: SE ≤ -6.00D) in Africa. Population- or school-based cross-sectional studies published from 1 Jan 2000 to 30 May 2021 were included. Meta-analysis using Freeman-Tukey double arcsine transformation was performed to estimate the prevalence of childhood myopia and high myopia. Myopia prevalence from subgroup analyses for age groups and settings were used as baseline for generating a prediction model using linear regression. RESULTS: Forty-two studies from 19 (of 54) African countries were included in the meta-analysis (N = 737,859). Overall prevalence of childhood myopia and high myopia were 4.7% (95% CI: 3.3%-6.5%) and 0.6% (95% CI: 0.2%-1.1%), respectively. Estimated prevalence across the African regions was highest in the North (6.8% [95% CI: 4.0%-10.2%]), followed by Southern (6.3% [95% CI: 3.9%-9.1%]), East (4.7% [95% CI: 3.1%-6.7%]) and West (3.5% [95% CI: 1.9%-6.3%]) Africa. Prevalence from 2011 to 2021 was approximately double that from 2000 to 2010 for all studies combined, and between 1.5 and 2.5 times higher for ages 5-11 and 12-18 years, for boys and girls and for urban and rural settings, separately. Childhood myopia prevalence is projected to increase in urban settings and older children to 11.1% and 10.8% by 2030, 14.4% and 14.1% by 2040 and 17.7% and 17.4% by 2050, respectively; marginally higher than projected in the overall population (16.4% by 2050). CONCLUSIONS: Childhood myopia prevalence has approximately doubled since 2010, with a further threefold increase predicted by 2050. Given this trajectory and the specific public health challenges in Africa, it is imperative to implement basic myopia prevention programmes, enhance spectacle coverage and ophthalmic services and generate more data to understand the changing myopia epidemiology to mitigate the expanding risk of the African population.


Subject(s)
Myopia , Adolescent , Africa/epidemiology , Child , Cross-Sectional Studies , Female , Humans , Male , Myopia/epidemiology , Prevalence , Rural Population
19.
Invest Ophthalmol Vis Sci ; 63(6): 15, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35704304

ABSTRACT

Purpose: We investigated axial length (AL) distributions in inherited retinal diseases (IRDs), comparing them with reference cohorts. Methods: AL measurements from IRD natural history study participants were included and compared with reference cohorts (TwinsUK, Raine Study Gen2-20, and published studies). Comparing with the Raine Study cohort, formal odds ratios (ORs) for AL ≥ 26 mm or AL ≤ 22 mm were derived for each IRD (Firth's logistic regression model, adjusted for age and sex). Results: Measurements were available for 435 patients (median age, 19.5 years). Of 19 diseases, 10 had >10 participants: ABCA4 retinopathy; CNGB3- and CNGA3-associated achromatopsia; RPGR-associated disease; RPE65-associated disease; blue cone monochromacy (BCM); Bornholm eye disease (BED); TYR- and OCA2-associated oculocutaneous albinism; and GPR143-associated ocular albinism. Compared with the TwinsUK cohort (n = 322; median age, 65.1 years) and Raine Study cohort (n = 1335; median age, 19.9 years), AL distributions were wider in the IRD groups. Increased odds for longer ALs were observed for BCM, BED, RPGR, RPE65, OCA2, and TYR; increased odds for short AL were observed for RPE65, TYR, and GPR143. In subanalysis of RPGR-associated disease, longer average ALs occurred in cone-rod dystrophy (n = 5) than rod-cone dystrophy (P = 0.002). Conclusions: Several diseases showed increased odds for longer AL (highest OR with BCM); some showed increased odds for shorter AL (highest OR with GPR143). Patients with RPE65- and TYR-associated disease showed increased odds for longer and for shorter eyes. Albinism genes were associated with different effects on AL. These findings add to the phenotype of IRDs and may yield insights into mechanisms of refractive error development.


Subject(s)
Albinism, Oculocutaneous , Retinal Diseases , ATP-Binding Cassette Transporters/genetics , Albinism, Oculocutaneous/genetics , Eye Proteins/genetics , Genetic Diseases, X-Linked , Humans , Mutation , Myopia , Retina , Retinal Diseases/genetics
20.
Ophthalmic Physiol Opt ; 42(5): 1092-1102, 2022 09.
Article in English | MEDLINE | ID: mdl-35726623

ABSTRACT

PURPOSE: Treatments for myopia progression are now available, but implementing these into clinical practice will place a burden on the eye care workforce. This study estimated the full-time equivalent (FTE) workforce required to implement myopia control treatments in the UK and Ireland. METHODS: To estimate the number of 6- to 21-year-olds with myopia, two models utilising separate data sources were developed. The examination-based model used: (1) the number of primary care eye examinations conducted annually and (2) the proportion of these that are for myopic young people. The prevalence-based model used epidemiological data on the age-specific prevalence of myopia. The proportion of myopic young people progressing ≥0.25 dioptres (D)/year or ≥0.50 D/year was obtained from Irish electronic health records and the recommended review schedule from clinical management guidelines. RESULTS: Using the examination and prevalence models, respectively, the estimated number of young people with myopia was 2,469,943 and 2,235,713. The extra workforce required to provide comprehensive myopia management for this target population was estimated at 226-317 FTE at the 0.50 D/year threshold and 433-630 FTE at the 0.25 D/year threshold. Extra visits required for myopia control treatment represented approximately 2.6% of current primary eye care examinations versus 13.6% of hospital examinations. CONCLUSIONS: Implementing new myopia control treatments in primary care settings over the medium-term is unlikely to overwhelm the eye care workforce completely. Further increases to workforce, upskilling of current workforce and tools to reduce chair time will help to ensure sustainability of the eye care workforce into the future.


Subject(s)
Myopia, Degenerative , Adolescent , Disease Progression , Forecasting , Humans , Prevalence , Refraction, Ocular , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL
...