Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Physiol Pharmacol ; 66(5): 711-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26579577

ABSTRACT

Kynuramines, metabolites of melatonin and L-tryptophan, are synthesized endogenously by oxygenases or in spontaneous reaction by an interaction with free radicals. We have reported previously that melatonin stimulates expression and phosphorylation of heat shock protein (HSP) 27, as well as production of HSP70 and HSP90αß in pancreatic carcinoma cells (PANC-1). Based on those results, we hypothesized that above processes could have been involved in the interruption of intrinsic proapoptotic pathway. Herein, we report that incubation of PANC-1 cells with N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) or with L-kynurenine (L-KYN) lead to the overexpression of heat shock protein synthesis and these effects are partially reversed by 5-HT3 or MT1/MT2 receptor antagonists. PANC-1 cells in culture were treated with AFMK or L-KYN, with non selective MT1/MT2 receptor antagonist (luzindole), with 5-HT2 and 5-HT3 receptor antagonists (ketanserin and MDL72222), or combination of these substances. Both AFMK and L-KYN significantly decreased cytoplasmic HSP27 and this effect was presumably due to increased of its phosphorylation and consequent nuclear translocation, confirmed by immunoprecipitation of phosphorylated form of HSP27. These changes were accompanied by marked augmentation of HSP70 and HSP90αß in the cytosolic fraction. Pretreatment of cell cultures with luzindole or MDL72222 followed by the addition of AFMK or L-KYN reversed the stimulatory effects of these substances on HSP expression in PANC-1 cells, whereas ketanserin failed to influence mentioned above phenomenon. We conclude that activation of HSPs in pancreatic carcinoma cells seems to be dependent on an interaction of AFMK or L-KYN with MT1/MT2 or/and 5-HT3 receptors.


Subject(s)
Heat-Shock Proteins/metabolism , Kynuramine/metabolism , Pancreatic Neoplasms/metabolism , Serotonin/metabolism , Cell Line, Tumor , Humans , Ketanserin/pharmacology , Melatonin/metabolism , Receptor, Melatonin, MT1 , Receptor, Melatonin, MT2/metabolism , Tropanes/pharmacology , Tryptamines/pharmacology , Tryptophan/metabolism
2.
J Physiol Pharmacol ; 65(6): 791-800, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25554983

ABSTRACT

Immune system cells, particularly phagocytes, are exposed to direct contact with pathogens. Because of its nature - elimination of pathogenes - their cytoprotective systems supposed to be quick and forceful. Physiological consequence of phagocytosis for the phagocyte is the apoptotic death to prevent the eventual survival of bacteria as intracellular parasites. However, in some cases, defense systems used by the bacteria force the immune cells to prolong the contact with the pathogen for its effective elimination. Experiments were performed on Monomac-6 cells exposed to live CagA, VacA expressing Helicobacter pylori (H. pylori) over different period of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, Western-blot and electrophoretic mobility shift assay, respectively. We found that Monomac-6 cells infection with H. pylori resulted in the translocation of the entire cellular content of the heat shock protein 70 (HSP70) into the cytoplasm, where its presence could protect cell against toxic products of engulfed bacteria and premature apoptosis. At the same time the nuclear translocation of heat shock factor 1 (HSF-1) and activation of HSP70 gene transcription was noticed. Action of HSP70 might to postpone monocyte apoptosis through protecting cytoplasmic and nuclear proteins from damaging effect of bacterial products, what could be the defending mechanism against the toxic stress caused by engulfed bacteria and provide the immune cell with the sufficient amount of time required for neutralization of the bacteria from phagosomes, even at the expense of temporary lack of the protection of nuclear proteins.


Subject(s)
DNA-Binding Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Helicobacter Infections/metabolism , Helicobacter pylori , Monocytes/metabolism , Transcription Factors/metabolism , Antigens, Bacterial/metabolism , Apoptosis , Bacterial Proteins/metabolism , Cell Line, Tumor , DNA Fragmentation , DNA-Binding Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heat Shock Transcription Factors , Helicobacter pylori/metabolism , Humans , Protein Conformation , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL