Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(42): eadi4966, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37851807

ABSTRACT

BaNi2As2 is a structural analog of the pnictide superconductor BaFe2As2, which, like the iron-based superconductors, hosts a variety of ordered phases including charge density waves (CDWs), electronic nematicity, and superconductivity. Upon isovalent Sr substitution on the Ba site, the charge and nematic orders are suppressed, followed by a sixfold enhancement of the superconducting transition temperature (Tc). To understand the mechanisms responsible for enhancement of Tc, we present high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements of the Ba1-xSrxNi2As2 series, which agree well with our density functional theory (DFT) calculations throughout the substitution range. Analysis of our ARPES-validated DFT results indicates a Lifshitz transition and reasonably nested electron and hole Fermi pockets near optimal substitution where Tc is maximum. These nested pockets host Ni dxz/dyz orbital compositions, which we associate with the enhancement of nematic fluctuations, revealing unexpected connections to the iron-pnictide superconductors. This gives credence to a scenario in which nematic fluctuations drive an enhanced Tc.

2.
Sci Adv ; 9(2): eade4418, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36638179

ABSTRACT

The discovery of superconductivity in planar nickelates raises the question of how the electronic structure and correlations of Ni1+ compounds compare to those of the Cu2+ cuprate superconductors. Here, we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate Pr4Ni3O8, revealing a Fermi surface resembling that of the hole-doped cuprates but with critical differences. Specifically, the main portions of the Fermi surface are extremely similar to that of the bilayer cuprates, with an additional piece that can accommodate additional hole doping. We find that the electronic correlations are about twice as strong in the nickelates and are almost k-independent, indicating that they originate from a local effect, likely the Mott interaction, whereas cuprate interactions are somewhat less local. Nevertheless, the nickelates still demonstrate the strange-metal behavior in the electron scattering rates. Understanding the similarities and differences between these two families of strongly correlated superconductors is an important challenge.

3.
Sci Adv ; 6(30): eaba4275, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32743072

ABSTRACT

Novel magnetic topological materials pave the way for studying the interplay between band topology and magnetism. However, an intrinsically ferromagnetic topological material with only topological bands at the charge neutrality energy has so far remained elusive. Using rational design, we synthesized MnBi8Te13, a natural heterostructure with [MnBi2Te4] and [Bi2Te3] layers. Thermodynamic, transport, and neutron diffraction measurements show that despite the adjacent [MnBi2Te4] being 44.1 Å apart, MnBi8Te13 manifests long-range ferromagnetism below 10.5 K with strong coupling between magnetism and charge carriers. First-principles calculations and angle-resolved photoemission spectroscopy measurements reveal it is an axion insulator with sizable surface hybridization gaps. Our calculations further demonstrate the hybridization gap persists in the two-dimensional limit with a nontrivial Chern number. Therefore, as an intrinsic ferromagnetic axion insulator with clean low-energy band structures, MnBi8Te13 serves as an ideal system to investigate rich emergent phenomena, including the quantized anomalous Hall effect and quantized magnetoelectric effect.

4.
Rev Sci Instrum ; 89(7): 073901, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068119

ABSTRACT

We describe the development of a broadband (0.3-10 THz) optical pump-terahertz probe spectrometer with an unprecedented combination of temporal resolution (≤200 fs) operating in external magnetic fields as high as 25 T using the new Split Florida-Helix magnet system. Using this new instrument, we measure the transient dynamics in a gallium arsenide four-quantum well sample after photoexcitation at 800 nm.

SELECTION OF CITATIONS
SEARCH DETAIL