Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nature ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693260

ABSTRACT

The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.

2.
Nat Immunol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816617

ABSTRACT

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.

3.
Science ; 382(6667): eade9516, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824638

ABSTRACT

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Subject(s)
Cognition , Hominidae , Neocortex , Temporal Lobe , Animals , Humans , Gene Expression Profiling , Gorilla gorilla/genetics , Hominidae/genetics , Hominidae/physiology , Macaca mulatta/genetics , Pan troglodytes/genetics , Phylogeny , Transcriptome , Neocortex/physiology , Species Specificity , Temporal Lobe/physiology
4.
Science ; 382(6667): eadf7044, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824643

ABSTRACT

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.1 million cells in 42 brain regions from three adults. Integrating this data unveiled 107 distinct cell types and their specific utilization of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly a third of the cCREs demonstrated conservation and chromatin accessibility in the mouse brain cells. We reveal strong links between specific brain cell types and neuropsychiatric disorders including schizophrenia, bipolar disorder, Alzheimer's disease (AD), and major depression, and have developed deep learning models to predict the regulatory roles of noncoding risk variants in these disorders.


Subject(s)
Atlases as Topic , Brain , Chromatin , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Chromatin/metabolism , DNA/metabolism , Neurons/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis
5.
Science ; 382(6667): eadf1226, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824650

ABSTRACT

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.


Subject(s)
Brain , Neurogenesis , Pregnancy Trimester, First , Female , Humans , Pregnancy , Astrocytes/cytology , Brain/cytology , Brain/embryology , Neuroglia , Neurons/cytology , Atlases as Topic , Single-Cell Gene Expression Analysis
6.
Science ; 382(6667): eadf6812, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824655

ABSTRACT

Variation in cytoarchitecture is the basis for the histological definition of cortical areas. We used single cell transcriptomics and performed cellular characterization of the human cortex to better understand cortical areal specialization. Single-nucleus RNA-sequencing of 8 areas spanning cortical structural variation showed a highly consistent cellular makeup for 24 cell subclasses. However, proportions of excitatory neuron subclasses varied substantially, likely reflecting differences in connectivity across primary sensorimotor and association cortices. Laminar organization of astrocytes and oligodendrocytes also differed across areas. Primary visual cortex showed characteristic organization with major changes in the excitatory to inhibitory neuron ratio, expansion of layer 4 excitatory neurons, and specialized inhibitory neurons. These results lay the groundwork for a refined cellular and molecular characterization of human cortical cytoarchitecture and areal specialization.


Subject(s)
Neocortex , Humans , Neocortex/metabolism , Neocortex/ultrastructure , Neurons/classification , Neurons/metabolism , Transcriptome , Single-Cell Gene Expression Analysis , Phylogeny
7.
Science ; 382(6667): eadd7046, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824663

ABSTRACT

The human brain directs complex behaviors, ranging from fine motor skills to abstract intelligence, but the diversity of cell types that support these skills has not been fully described. In this work, we used single-nucleus RNA sequencing to systematically survey cells across the entire adult human brain. We sampled more than three million nuclei from approximately 100 dissections across the forebrain, midbrain, and hindbrain in three postmortem donors. Our analysis identified 461 clusters and 3313 subclusters organized largely according to developmental origins and revealing high diversity in midbrain and hindbrain neurons. Astrocytes and oligodendrocyte-lineage cells also exhibited regional diversity at multiple scales. The transcriptomic census of the entire human brain presented in this work provides a resource for understanding the molecular diversity of the human brain in health and disease.


Subject(s)
Brain , Transcriptome , Adult , Humans , Brain/cytology , Brain/metabolism , Gene Expression Profiling , Mesencephalon , Neurons/metabolism , Prosencephalon , Single-Cell Gene Expression Analysis
8.
Science ; 382(6667): eadf5357, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824674

ABSTRACT

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. We further developed single-cell methylation barcodes that reliably predict brain cell types using the methylation status of select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell-type-specific gene regulation in adult human brains.


Subject(s)
Brain , DNA Methylation , Epigenesis, Genetic , Adult , Humans , Male , Brain/cytology , Brain/metabolism , Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Imaging, Three-Dimensional , Atlases as Topic
9.
Neuron ; 111(22): 3590-3603.e5, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625400

ABSTRACT

Although cardinal cortical interneuron identity is established upon cell-cycle exit, it remains unclear whether specific interneuron subtypes are pre-established, and if so, how their identity is maintained prior to circuit integration. We conditionally removed Sox6 (Sox6-cKO) in migrating somatostatin (Sst+) interneurons and assessed the effects on their mature identity. In adolescent mice, five of eight molecular Sst+ subtypes were nearly absent in the Sox6-cKO cortex without a reduction in cell number. Sox6-cKO cells displayed electrophysiological maturity and expressed genes enriched within the broad class of Sst+ interneurons. Furthermore, we could infer subtype identity prior to cortical integration (embryonic day 18.5), suggesting that the loss in subtype was due to disrupted subtype maintenance. Conversely, Sox6 removal at postnatal day 7 did not disrupt marker expression in the mature cortex. Therefore, Sox6 is necessary during migration for maintenance of Sst+ subtype identity, indicating that subtype maintenance requires active transcriptional programs.


Subject(s)
Interneurons , Somatostatin , Mice , Animals , Interneurons/physiology , Somatostatin/metabolism , Electrophysiological Phenomena , Cerebral Cortex , Parvalbumins/metabolism
10.
Nat Neurosci ; 26(5): 891-901, 2023 05.
Article in English | MEDLINE | ID: mdl-37095395

ABSTRACT

The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.


Subject(s)
Ependymoma , Neural Stem Cells , Child , Female , Pregnancy , Humans , Spinal Cord , Ependymoma/genetics , Ependymoma/metabolism , Cell Differentiation/genetics , Neural Stem Cells/physiology , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics
11.
Nat Cell Biol ; 25(2): 351-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36646791

ABSTRACT

The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.


Subject(s)
Embryo, Mammalian , Gene Expression Profiling , Humans , Cell Differentiation/genetics , Lung , Stem Cells
12.
Stem Cell Reports ; 18(1): 337-353, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36400027

ABSTRACT

Stem cell technologies provide new opportunities for modeling cells in health and disease and for regenerative medicine. In both cases, developmental knowledge and defining the molecular properties and quality of the cell types is essential. In this study, we identify developmental factors important for the differentiation of human embryonic stem cells (hESCs) into functional midbrain dopaminergic (mDA) neurons. We found that laminin-511, and dual canonical and non-canonical WNT activation followed by GSK3ß inhibition plus FGF8b, improved midbrain patterning. In addition, neurogenesis and differentiation were enhanced by activation of liver X receptors and inhibition of fibroblast growth factor signaling. Moreover, single-cell RNA-sequencing analysis revealed a developmental dynamics similar to that of the endogenous human ventral midbrain and the emergence of high-quality molecularly defined midbrain cell types, including mDA neurons. Our study identifies novel factors important for human midbrain development and opens the door for a future application of molecularly defined hESC-derived cell types in Parkinson disease.


Subject(s)
Human Embryonic Stem Cells , Humans , Transcriptome , Dopaminergic Neurons/metabolism , Cell Differentiation/genetics , Mesencephalon
13.
Nat Biotechnol ; 41(2): 222-231, 2023 02.
Article in English | MEDLINE | ID: mdl-36138169

ABSTRACT

Methods to spatially profile the transcriptome are dominated by a trade-off between resolution and throughput. Here we develop a method named Enhanced ELectric Fluorescence in situ Hybridization (EEL FISH) that can rapidly process large tissue samples without compromising spatial resolution. By electrophoretically transferring RNA from a tissue section onto a capture surface, EEL speeds up data acquisition by reducing the amount of imaging needed, while ensuring that RNA molecules move straight down toward the surface, preserving single-cell resolution. We apply EEL on eight entire sagittal sections of the mouse brain and measure the expression patterns of up to 440 genes to reveal complex tissue organization. Moreover, EEL can be used to study challenging human samples by removing autofluorescent lipofuscin, enabling the spatial transcriptome of the human visual cortex to be visualized. We provide full hardware specifications, all protocols and complete software for instrument control, image processing, data analysis and visualization.


Subject(s)
RNA , Transcriptome , Humans , Animals , Mice , RNA, Messenger/genetics , In Situ Hybridization, Fluorescence/methods , RNA/analysis , Transcriptome/genetics , Eels/genetics , Gene Expression Profiling/methods
14.
Dev Cell ; 57(11): 1421-1436.e5, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35523173

ABSTRACT

Oligodendrogenesis in the human central nervous system has been observed mainly at the second trimester of gestation, a much later developmental stage compared to oligodendrogenesis in mice. Here, we characterize the transcriptomic neural diversity in the human forebrain at post-conception weeks (PCW) 8-10. Using single-cell RNA sequencing, we find evidence of the emergence of a first wave of oligodendrocyte lineage cells as early as PCW 8, which we also confirm at the epigenomic level through the use of single-cell ATAC-seq. Using regulatory network inference, we predict key transcriptional events leading to the specification of oligodendrocyte precursor cells (OPCs). Moreover, by profiling the spatial expression of 50 key genes through the use of in situ sequencing (ISS), we identify regions in the human ventral fetal forebrain where oligodendrogenesis first occurs. Our results indicate evolutionary conservation of the first wave of oligodendrogenesis between mice and humans and describe regulatory mechanisms involved in human OPC specification.


Subject(s)
Oligodendroglia , Prosencephalon , Animals , Cell Differentiation/physiology , Humans , Mice , Oligodendroglia/metabolism , Transcriptome/genetics
15.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35593486

ABSTRACT

Understanding human brain development is of fundamental interest but is also very challenging. Single-cell RNA-sequencing studies in mammals have revealed that brain development is a highly dynamic process with tremendous, previously concealed, cellular heterogeneity. This Spotlight discusses key insights from these studies and their implications for experimental models. We survey published single-cell RNA-sequencing studies of mouse and human brain development, organized by anatomical regions and developmental time points. We highlight remaining gaps in the field, predominantly concerning human brain development. We propose future directions to fill the remaining gaps, and necessary complementary techniques to create an atlas integrated in space and time of human brain development.


Subject(s)
Brain , Single-Cell Analysis , Animals , Mammals/genetics , RNA , Single-Cell Analysis/methods
16.
Cell Genom ; 2(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35419551

ABSTRACT

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.

17.
J Mol Biol ; 434(15): 167606, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35489382

ABSTRACT

Recent development in inferring RNA velocity from single-cell RNA-seq opens up exciting new vista into developmental lineage and cellular dynamics. However, the estimated velocity only gives a snapshot of how the transcriptome instantaneously changes in individual cells, and it does not provide quantitative predictions and insights about the whole system. In this work, we develop RNA-ODE, a principled computational framework that extends RNA velocity to quantify systems level dynamics and improve single-cell data analysis. We model the gene expression dynamics by an ordinary differential equation (ODE) based formalism. Given a snapshot of gene expression at one time, RNA-ODE is able to predict and extrapolate the expression trajectory of each cell by solving the dynamic equations. Systematic experiments on simulations and on new data from developing brain demonstrate that RNA-ODE substantially improves many aspects of standard single-cell analysis. By leveraging temporal dynamics, RNA-ODE more accurately estimates cell state lineage and pseudo-time compared to previous state-of-the-art methods. It also infers gene regulatory networks and identifies influential genes whose expression changes can decide cell fate. We expect RNA-ODE to be a Swiss army knife that aids many facets of single-cell RNA-seq analysis.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , RNA , Single-Cell Analysis , Algorithms , Cell Lineage , RNA/genetics , RNA-Seq , Single-Cell Analysis/methods
18.
Nature ; 597(7875): 196-205, 2021 09.
Article in English | MEDLINE | ID: mdl-34497388

ABSTRACT

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Subject(s)
Cell Movement , Cell Tracking , Cells/cytology , Developmental Biology/methods , Embryo, Mammalian/cytology , Fetus/cytology , Information Dissemination , Organogenesis , Adult , Animals , Atlases as Topic , Cell Culture Techniques , Cell Survival , Data Visualization , Female , Humans , Imaging, Three-Dimensional , Male , Models, Animal , Organogenesis/genetics , Organoids/cytology , Stem Cells/cytology
19.
Nature ; 596(7870): 92-96, 2021 08.
Article in English | MEDLINE | ID: mdl-34321664

ABSTRACT

The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system.


Subject(s)
Brain/cytology , Brain/embryology , Single-Cell Analysis , Transcriptome , Animals , Animals, Newborn/genetics , Brain/anatomy & histology , Female , Gastrulation/genetics , Male , Mice , Neural Tube/anatomy & histology , Neural Tube/cytology , Neural Tube/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...