Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
HLA ; 102(3): 278-300, 2023 09.
Article in English | MEDLINE | ID: mdl-37191252

ABSTRACT

Organs transplanted across donor-specific HLA antibodies (DSA) are associated with a variety of clinical outcomes, including a high risk of acute kidney graft rejection. Unfortunately, the currently available assays to determine DSA characteristics are insufficient to clearly discriminate between potentially harmless and harmful DSA. To further explore the hazard potential of DSA, their concentration and binding strength to their natural target, using soluble HLA, may be informative. There are currently a number of biophysical technologies available that allow the assessment of antibody binding strength. However, these methods require prior knowledge of antibody concentrations. Our objective within this study was to develop a novel approach that combines the determination of DSA-affinity as well as DSA-concentration for patient sample evaluation within one assay. We initially tested the reproducibility of previously reported affinities of human HLA-specific monoclonal antibodies and assessed the technology-specific precision of the obtained results on multiple platforms, including surface plasmon resonance (SPR), bio-layer interferometry (BLI), Luminex (single antigen beads; SAB), and flow-induced dispersion analysis (FIDA). While the first three (solid-phase) technologies revealed comparable high binding-strengths, suggesting measurement of avidity, the latter (in-solution) approach revealed slightly lower binding-strengths, presumably indicating measurement of affinity. We believe that our newly developed in-solution FIDA-assay is particularly suitable to provide useful clinical information by not just measuring DSA-affinities in patient serum samples but simultaneously delivering a particular DSA-concentration. Here, we investigated DSA from 20 pre-transplant patients, all of whom showed negative CDC-crossmatch results with donor cells and SAB signals ranging between 571 and 14899 mean fluorescence intensity (MFI). DSA-concentrations were found in the range between 11.2 and 1223 nM (median 81.1 nM), and their measured affinities fall between 0.055 and 24.7 nM (median 5.34 nM; 449-fold difference). In 13 of 20 sera (65%), DSA accounted for more than 0.1% of total serum antibodies, and 4/20 sera (20%) revealed a proportion of DSA even higher than 1%. To conclude, this study strengthens the presumption that pre-transplant patient DSA consists of various concentrations and different net affinities. Validation of these results in a larger patient cohort with clinical outcomes will be essential in a further step to assess the clinical relevance of DSA-concentration and DSA-affinity.


Subject(s)
Antibodies, Monoclonal , Kidney Transplantation , Humans , Antibody Affinity , Reproducibility of Results , HLA Antigens , Alleles , Tissue Donors , Histocompatibility Testing/methods , Graft Rejection , Isoantibodies
2.
PLoS Pathog ; 18(1): e1010243, 2022 01.
Article in English | MEDLINE | ID: mdl-35100312

ABSTRACT

To assess the response to vaccination, quantity (concentration) and quality (avidity) of neutralizing antibodies are the most important parameters. Specifically, an increase in avidity indicates germinal center formation, which is required for establishing long-term protection. For influenza, the classical hemagglutination inhibition (HI) assay, however, quantifies a combination of both, and to separately determine avidity requires high experimental effort. We developed from first principles a biophysical model of hemagglutination inhibition to infer IgG antibody avidities from measured HI titers and IgG concentrations. The model accurately describes the relationship between neutralizing antibody concentration/avidity and HI titer, and explains quantitative aspects of the HI assay, such as robustness to pipetting errors and detection limit. We applied our model to infer avidities against the pandemic 2009 H1N1 influenza virus in vaccinated patients (n = 45) after hematopoietic stem cell transplantation (HSCT) and validated our results with independent avidity measurements using an enzyme-linked immunosorbent assay with urea elution. Avidities inferred by the model correlated with experimentally determined avidities (ρ = 0.54, 95% CI = [0.31, 0.70], P < 10-4). The model predicted that increases in IgG concentration mainly contribute to the observed HI titer increases in HSCT patients and that immunosuppressive treatment is associated with lower baseline avidities. Since our approach requires only easy-to-establish measurements as input, we anticipate that it will help to disentangle causes for poor vaccination outcomes also in larger patient populations. This study demonstrates that biophysical modelling can provide quantitative insights into agglutination assays and complement experimental measurements to refine antibody response analyses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity/immunology , Immunogenicity, Vaccine/immunology , Influenza, Human/immunology , Models, Immunological , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza A Virus, H1N1 Subtype , Neutralization Tests
3.
J Infect Dis ; 225(8): 1482-1493, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34415049

ABSTRACT

BACKGROUND: Influenza vaccination efficacy is reduced after hematopoietic stem cell transplantation (HSCT) and patient factors determining vaccination outcomes are still poorly understood. METHODS: We investigated the antibody response to seasonal influenza vaccination in 135 HSCT patients and 69 healthy volunteers (HVs) in a prospective observational multicenter cohort study. We identified patient factors associated with hemagglutination inhibition titers against A/California/2009/H1N1, A/Texas/2012/H3N2, and B/Massachusetts/2012 by multivariable regression on the observed titer levels and on seroconversion/seroprotection categories for comparison. RESULTS: Both regression approaches yielded consistent results but regression on titers estimated associations with higher precision. HSCT patients required 2 vaccine doses to achieve average responses comparable to a single dose in HVs. Prevaccination titers were positively associated with time after transplantation, confirming that HSCT patients can elicit potent antibody responses. However, an unrelated donor, absolute lymphocyte counts below the normal range, and treatment with calcineurin inhibitors lowered the odds of responding. CONCLUSIONS: HSCT patients show a highly heterogeneous vaccine response but, overall, patients benefited from the booster shot and can acquire seroprotective antibodies over the years after transplantation. Several common patient factors lower the odds of responding, urging identification of additional preventive strategies in the poorly responding groups. CLINICAL TRIALS REGISTRATION: NCT03467074.


Subject(s)
Hematopoietic Stem Cell Transplantation , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Viral , Antibody Formation , Cohort Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Seasons , Vaccination
4.
Cell Rep ; 33(1): 108211, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027651

ABSTRACT

Type III interferon (interferon lambda [IFN-λ]) is known to be a potential immune modulator, but the mechanisms behind its immune-modulatory functions and its impact on plasmablast differentiation in humans remain unknown. Human B cells and their subtypes directly respond to IFN-λ. Using B cell transcriptome profiling, we investigate the immune-modulatory role of IFN-λ in B cells. We find that IFN-λ-induced gene expression in B cells is steady, prolonged, and importantly, cell type specific. Furthermore, IFN-λ enhances the mTORC1 (mammalian/mechanistic target of rapamycin complex 1) pathway in B cells activated by the B cell receptor (BCR/anti-IgM). Engagement of mTORC1 by BCR and IFN-λ induces cell-cycle progress in B cells. Subsequently, IFN-λ boosts the differentiation of naive B cells into plasmablasts upon activation, and the cells gain effector functions such as cytokine release (IL-6 and IL-10) and antibody production. Our study shows how IFN-λ systematically boosts the differentiation of naive B cells into plasmablasts by enhancing the mTORC1 pathway and cell-cycle progression in activated B cells.


Subject(s)
B-Lymphocytes/immunology , Interferons/immunology , Mechanistic Target of Rapamycin Complex 1/genetics , Plasma Cells/metabolism , Cell Differentiation , Humans
5.
J Vis Exp ; (130)2017 12 01.
Article in English | MEDLINE | ID: mdl-29286466

ABSTRACT

Antibody titers are commonly used as surrogate markers for serological protection against influenza and other pathogens. Detailed knowledge of antibody production pre- and post-vaccination is required to understand vaccine-induced immunity. This article describes a reliable point-by-point protocol to determine influenza-specific antibody titers. The first protocol describes a method to specify the antigen amounts required for hemagglutination, which standardizes the concentrations for subsequent usage in the second protocol (hemagglutination assay, HA assay). The second protocol describes the quantification of influenza-specific antibody titers against different viral strains by using a serial dilution of human serum or cell culture supernatants (hemagglutination inhibition assay, HI assay). As an applied example, we show the antibody response of a healthy cohort, which received a trivalent inactivated influenza vaccine. Additionally, the cross-reactivity between the different influenza viruses is shown and methods to minimize cross-reactivity by using different types of animal red blood cells (RBCs) are explained. The discussion highlights advantages and disadvantages of the presented assays and how the determination of influenza-specific antibody titers can improve the understanding of vaccine-related immunity.


Subject(s)
Antibodies, Viral/blood , Hemagglutination Inhibition Tests/methods , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Antibody Specificity , Cross Reactions/immunology , Humans , Influenza, Human/blood , Influenza, Human/prevention & control
6.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 5): 346-55, 2016 05.
Article in English | MEDLINE | ID: mdl-27139825

ABSTRACT

Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Peptide Fragments/chemistry , Calorimetry , Crystallography, X-Ray , Protein Binding , Protein Conformation
7.
J Vis Exp ; (109)2016 Mar 14.
Article in English | MEDLINE | ID: mdl-27023275

ABSTRACT

A comprehensive understanding of signaling pathways requires detailed knowledge regarding ligand-receptor interaction. This article describes two fast and reliable point-by-point protocols of enzyme-linked immunosorbent assays (ELISAs) for the investigation of ligand-receptor interactions: the direct ligand-receptor interaction assay (LRA) and the competition LRA. As a case study, the ELISA based analysis of the interaction between different lambda interferons (IFNLs) and the alpha subunit of their receptor (IL28RA) is presented: the direct LRA is used for the determination of dissociation constants (KD values) between receptor and IFN ligands, and the competition LRA for the determination of the inhibitory capacity of an oligopeptide, which was designed to compete with the IFNLs at their receptor binding site. Analytical steps to estimate KD and half maximal inhibitory concentration (IC50) values are described. Finally, the discussion highlights advantages and disadvantages of the presented method and how the results enable a better molecular understanding of ligand-receptor interactions.


Subject(s)
Binding, Competitive/physiology , Enzyme-Linked Immunosorbent Assay/methods , Interleukins/metabolism , Protein Binding/physiology , Receptors, Cytokine/metabolism , Binding Sites , Biophysical Phenomena , Carrier Proteins , Interferons , Ligands , Receptors, Interferon
8.
Hum Vaccin Immunother ; 12(4): 907-15, 2016 04 02.
Article in English | MEDLINE | ID: mdl-26809773

ABSTRACT

Many host- and vaccine-specific factors modulate an antibody response. Host genetic polymorphisms, in particular, modulate the immune response in multiple ways on different scales. This review article describes how information on host genetic polymorphisms and corresponding immune cascades may be used to generate personalized vaccine strategies to optimize the antibody response.


Subject(s)
Antibody Formation/genetics , Immunity, Humoral/genetics , Polymorphism, Single Nucleotide , Vaccines/immunology , Antibodies, Viral/blood , Gene Expression , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Measles/prevention & control , Measles/virology , Measles Vaccine/immunology , Measles virus/immunology , Precision Medicine , Systems Biology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...