Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Front Immunol ; 15: 1383110, 2024.
Article in English | MEDLINE | ID: mdl-38650930

ABSTRACT

Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.


Subject(s)
Abatacept , Alleles , Arthritis, Rheumatoid , CD8-Positive T-Lymphocytes , Receptors, Immunologic , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , Male , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Adult , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Middle Aged , Antirheumatic Agents/therapeutic use , Genetic Predisposition to Disease , T-Cell Exhaustion
2.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37751304

ABSTRACT

Variation in the preservation of ß cell function in clinical trials in type 1 diabetes (T1D) has emphasized the need to define biomarkers to predict treatment response. The T1DAL trial targeted T cells with alefacept (LFA-3-Ig) and demonstrated C-peptide preservation in approximately 30% of new-onset T1D individuals. We analyzed islet antigen-reactive (IAR) CD4+ T cells in PBMC samples collected prior to treatment from alefacept- and placebo-treated individuals using flow cytometry and single-cell RNA sequencing. IAR CD4+ T cells at baseline had heterogeneous phenotypes. Transcript profiles formed phenotypic clusters of cells along a trajectory based on increasing maturation and activation, and T cell receptor (TCR) chains showed clonal expansion. Notably, the frequency of IAR CD4+ T cells with a memory phenotype and a unique transcript profile (cluster 3) were inversely correlated with C-peptide preservation in alefacept-treated, but not placebo-treated, individuals. Cluster 3 cells had a proinflammatory phenotype characterized by expression of the transcription factor BHLHE40 and the cytokines GM-CSF and TNF-α, and shared TCR chains with effector memory-like clusters. Our results suggest IAR CD4+ T cells as a potential baseline biomarker of response to therapies targeting the CD2 pathway and warrant investigation for other T cell-related therapies.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , CD4-Positive T-Lymphocytes/metabolism , Alefacept/therapeutic use , C-Peptide , Leukocytes, Mononuclear/metabolism , Biomarkers , Receptors, Antigen, T-Cell/therapeutic use
3.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37432736

ABSTRACT

BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).


Subject(s)
Antilymphocyte Serum , Diabetes Mellitus, Type 1 , Humans , Antilymphocyte Serum/therapeutic use , CD4-Positive T-Lymphocytes/metabolism , T-Cell Exhaustion , C-Peptide , Granulocyte Colony-Stimulating Factor/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
4.
Elife ; 122023 03 24.
Article in English | MEDLINE | ID: mdl-36961507

ABSTRACT

A genetic variant in the gene PTPN22 (R620W, rs2476601) is strongly associated with increased risk for multiple autoimmune diseases and linked to altered TCR regulation and T cell activation. Here, we utilize Crispr/Cas9 gene editing with donor DNA repair templates in human cord blood-derived, naive T cells to generate PTPN22 risk edited (620W), non-risk edited (620R), or knockout T cells from the same donor. PTPN22 risk edited cells exhibited increased activation marker expression following non-specific TCR engagement, findings that mimicked PTPN22 KO cells. Next, using lentiviral delivery of T1D patient-derived TCRs against the pancreatic autoantigen, islet-specific glucose-6 phosphatase catalytic subunit-related protein (IGRP), we demonstrate that loss of PTPN22 function led to enhanced signaling in T cells expressing a lower avidity self-reactive TCR, but not a high-avidity TCR. In this setting, loss of PTPN22 mediated enhanced proliferation and Th1 skewing. Importantly, expression of the risk variant in association with a lower avidity TCR also increased proliferation relative to PTPN22 non-risk T cells. Together, these findings suggest that, in primary human T cells, PTPN22 rs2476601 contributes to autoimmunity risk by permitting increased TCR signaling and activation in mildly self-reactive T cells, thereby potentially expanding the self-reactive T cell pool and skewing this population toward an inflammatory phenotype.


Subject(s)
Autoimmune Diseases , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , Gene Editing , Polymorphism, Single Nucleotide , Receptors, Antigen, T-Cell/genetics , Genetic Predisposition to Disease , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
5.
Diabetes Care ; 46(5): 1005-1013, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36920087

ABSTRACT

OBJECTIVE: Previous studies showed that inhibiting lymphocyte costimulation reduces declining ß-cell function in individuals newly diagnosed with type 1 diabetes. We tested whether abatacept would delay or prevent progression of type 1 diabetes from normal glucose tolerance (NGT) to abnormal glucose tolerance (AGT) or to diabetes and the effects of treatment on immune and metabolic responses. RESEARCH DESIGN AND METHODS: We conducted a phase 2, randomized, placebo-controlled, double-masked trial of abatacept in antibody-positive participants with NGT who received monthly abatacept/placebo infusions for 12 months. The end point was AGT or diabetes, assessed by oral glucose tolerance tests. RESULTS: A total of 101 participants received abatacept and 111 placebo. Of these, 81 (35 abatacept and 46 placebo) met the end point of AGT or type 1 diabetes diagnosis (hazard ratio 0.702; 95% CI 0.452, 1.09; P = 0.11) The C-peptide responses to oral glucose tolerance tests were higher in the abatacept arm (P < 0.03). Abatacept reduced the frequency of inducible T-cell costimulatory (ICOS)+ PD1+ T-follicular helper (Tfh) cells during treatment (P < 0.0001), increased naive CD4+ T cells, and also reduced the frequency of CD4+ regulatory T cells (Tregs) from the baseline (P = 0.0067). Twelve months after treatment, the frequency of ICOS+ Tfh, naive CD4+ T cells, and Tregs returned to baseline. CONCLUSIONS: Although abatacept treatment for 1 year did not significantly delay progression to glucose intolerance in at-risk individuals, it impacted immune cell subsets and preserved insulin secretion, suggesting that costimulation blockade may modify progression of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Immunosuppressive Agents , T-Lymphocytes, Regulatory , Glucose/therapeutic use
6.
J Immunol ; 210(7): 888-894, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36947816

ABSTRACT

The thymus is an intricate organ consisting of a diverse population of thymic epithelial cells (TECs). Cortical and medullary TECs and their subpopulations have distinct roles in coordinating the development and selection of functionally competent and self-tolerant T cells. Recent advances made in technologies such as single-cell RNA sequencing have made it possible to investigate and resolve the heterogeneity in TECs. These findings have provided further understanding of the molecular mechanisms regulating TEC function and expression of tissue-restricted Ags. In this brief review, we focus on the newly characterized subsets of TECs and their diversity in relation to their functions in supporting T cell development. We also discuss recent discoveries in expression of self-antigens in the context of TEC development as well as the cellular and molecular changes occurring during embryonic development to thymic involution.


Subject(s)
Systems Biology , T-Lymphocytes , Thymus Gland , Epithelial Cells , Cell Differentiation
8.
Sci Transl Med ; 14(665): eabn1716, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36197963

ABSTRACT

Adoptive transfer of regulatory T cells (Tregs) is therapeutic in type 1 diabetes (T1D) mouse models. Tregs that are specific for pancreatic islets are more potent than polyclonal Tregs in preventing disease. However, the frequency of antigen-specific natural Tregs is extremely low, and ex vivo expansion may destabilize Tregs, leading to an effector phenotype. Here, we generated durable, antigen-specific engineered Tregs (EngTregs) from primary human CD4+ T cells by combining FOXP3 homology-directed repair editing and lentiviral T cell receptor (TCR) delivery. Using TCRs derived from clonally expanded CD4+ T cells isolated from patients with T1D, we generated islet-specific EngTregs that suppressed effector T cell (Teff) proliferation and cytokine production. EngTregs suppressed Teffs recognizing the same islet antigen in addition to bystander Teffs recognizing other islet antigens through production of soluble mediators and both direct and indirect mechanisms. Adoptively transferred murine islet-specific EngTregs homed to the pancreas and blocked diabetes triggered by islet-specific Teffs or diabetogenic polyclonal Teffs in recipient mice. These data demonstrate the potential of antigen-specific EngTregs as a targeted therapy for preventing T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Animals , Cytokines , Diabetes Mellitus, Type 1/genetics , Forkhead Transcription Factors , Humans , Mice , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory
9.
Pancreas ; 51(6): 580-585, 2022 07 01.
Article in English | MEDLINE | ID: mdl-36206462

ABSTRACT

ABSTRACT: The association between acute pancreatitis (AP) and diabetes mellitus (DM) has long been established, with the initial descriptions of AP patients presenting with DM after a bout of AP published in the 1940s and 50s. However, the potential mechanisms involved, particularly those components related to the immune system, have not been well defined. The Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study is a multicenter clinical study designed to understand the frequency and phenotype of DM developing after AP. This article describes one objective of the DREAM study: to determine the immunologic mechanisms of DM after AP, including the contribution of ß-cell autoimmunity. This component of the study will assess the presence of islet autoimmunity, as well as the magnitude and kinetics of the innate and adaptive immune response at enrollment and during longitudinal follow-up after 1 or more episodes of AP. Finally, DREAM will evaluate the relationship between immune features, DM development, and pancreatitis etiology and severity.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Pancreatitis , Acute Disease , Diabetes Mellitus, Type 1/complications , Humans , Pancreatitis/complications
10.
Diabetes Care ; 45(10): 2189-2201, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36150059

ABSTRACT

It has been 100 years since the life-saving discovery of insulin, yet daily management of type 1 diabetes (T1D) remains challenging. Even with closed-loop systems, the prevailing need for persons with T1D to attempt to match the kinetics of insulin activity with the kinetics of carbohydrate metabolism, alongside dynamic life factors affecting insulin requirements, results in the need for frequent interventions to adjust insulin dosages or consume carbohydrates to correct mismatches. Moreover, peripheral insulin dosing leaves the liver underinsulinized and hyperglucagonemic and peripheral tissues overinsulinized relative to their normal physiologic roles in glucose homeostasis. Disease-modifying therapies (DMT) to preserve and/or restore functional ß-cell mass with controlled or corrected autoimmunity would simplify exogenous insulin need, thereby reducing disease mortality, morbidity, and management burdens. However, identifying effective DMTs for T1D has proven complex. There is some consensus that combination DMTs are needed for more meaningful clinical benefit. Other complexities are addressable with more innovative trial designs and logistics. While no DMT has yet been approved for marketing, existing regulatory guidance provides opportunities to further "de-risk" development. The T1D development ecosystem can accelerate progress by using more innovative ways for testing DMTs for T1D. This perspective outlines suggestions for accelerating evaluation of candidate T1D DMTs, including combination therapies, by use of innovative trial designs, enhanced logistical coordination of efforts, and regulatory guidance for expedited development, combination therapies, and adaptive designs.


Subject(s)
Diabetes Mellitus, Type 1 , Carbohydrates/therapeutic use , Clinical Trials as Topic , Ecosystem , Glucose/therapeutic use , Humans , Insulin/therapeutic use , Insulin, Regular, Human/therapeutic use
11.
Front Immunol ; 13: 935394, 2022.
Article in English | MEDLINE | ID: mdl-35911690

ABSTRACT

Elevated levels and enhanced sensing of the pro-inflammatory cytokine interleukin-6 (IL-6) are key features of many autoimmune and inflammatory diseases. To better understand how IL-6 signaling may influence human T cell fate, we investigated the relationships between levels of components of the IL-6R complex, pSTAT responses, and transcriptomic and translational changes in CD4+ and CD8+ T cell subsets from healthy individuals after exposure to IL-6. Our findings highlight the striking heterogeneity in mbIL-6R and gp130 expression and IL-6-driven pSTAT1/3 responses across T cell subsets. Increased mbIL-6R expression correlated with enhanced signaling via pSTAT1 with less impact on pSTAT3, most strikingly in CD4+ naïve T cells. Additionally, IL-6 rapidly induced expression of transcription factors and surface receptors expressed by T follicular helper cells and altered expression of markers of apoptosis. Importantly, many of the features associated with the level of mbIL-6R expression on T cells were recapitulated both in the setting of tocilizumab therapy and when comparing donor CD4+ T cells harboring the genetic variant, IL6R Asp358Ala (rs2228145), known to alter mbIL-6R expression on T cells. Collectively, these findings should be taken into account as we consider the role of IL-6 in disease pathogenesis and translating IL-6 biology into effective therapies for T cell-mediated autoimmune disease.


Subject(s)
Interleukin-6 , STAT1 Transcription Factor , Signal Transduction , T-Lymphocytes , Apoptosis , Cytokines , Humans , Immune System Diseases/etiology , Immune System Diseases/pathology , Interleukin-6/metabolism , Interleukin-6/pharmacology , STAT1 Transcription Factor/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
12.
Sci Transl Med ; 14(627): eabi4888, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35020411

ABSTRACT

Individuals with Down syndrome show cellular and clinical features of dysregulated aging of the immune system, including a shift from naïve to memory T cells and increased incidence of autoimmunity. However, a quantitative understanding of how various immune compartments change with age in Down syndrome remains lacking. Here, we performed deep immunophenotyping of a cohort of individuals with Down syndrome across the life span, selecting for autoimmunity-free individuals. We simultaneously interrogated age- and sex-matched healthy controls and people with type 1 diabetes as a representative autoimmune disease. We built an analytical software, IMPACD (Iterative Machine-assisted Permutational Analysis of Cytometry Data), that enabled us to rapidly identify many features of immune dysregulation in Down syndrome shared with other autoimmune diseases. We found quantitative and qualitative dysregulation of naïve CD4+ and CD8+ T cells in individuals with Down syndrome and identified interleukin-6 as a candidate driver of some of these changes, thus extending the consideration of immunopathologic cytokines in Down syndrome beyond interferons. We used immune cellular composition to generate three linear models of aging (immune clocks) trained on control participants. All three immune clocks demonstrated advanced immune aging in individuals with Down syndrome. One of these clocks, informed by Down syndrome­relevant biology, also showed advanced immune aging in individuals with type 1 diabetes. Orthologous RNA sequencing­derived immune clocks also demonstrated advanced immune aging in individuals with Down syndrome. Together, our findings demonstrate an approach to studying immune aging in Down syndrome that may have implications in other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Down Syndrome , Aging , Autoimmunity/genetics , CD8-Positive T-Lymphocytes , Down Syndrome/genetics , Humans , Immunophenotyping
13.
Hepatol Commun ; 6(4): 780-794, 2022 04.
Article in English | MEDLINE | ID: mdl-34816633

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (Pcsk9) binds to hepatic low-density lipoprotein receptor (LDLR) and induces its internalization and degradation. Pcsk9 inhibition increases LDLR expression by hepatocytes, which causes increased uptake of circulating LDL, thereby reducing plasma LDL-cholesterol. However, by increasing the uptake of LDL by the liver, Pcsk9 inhibition increases the exposure of the liver to cholesterol, which may result in higher risk of steatohepatitis and ever carcinogenesis. We compared Pcsk9-/- knockout (KO) mice and appropriate wild-type (WT) controls of the same strain assigned to a high-fat (15%, wt/wt) diet for 9 months supplemented with 0.25%, 0.5%, or 0.75% dietary cholesterol. Pcsk9 KO mice on a high-fat, high-cholesterol diet exhibited higher levels of hepatic free cholesterol loading and hepatic cholesterol crystallization than their WT counterparts. Pcsk9 KO mice developed crown-like structures of macrophages surrounding cholesterol crystal-containing lipid droplets and hepatocytes, exhibited higher levels of apoptosis, and developed significantly more hepatic inflammation and fibrosis consistent with fibrosing steatohepatitis, including 5-fold and 11-fold more fibrosis at 0.5% and 0.75% dietary cholesterol, respectively. When injected with diethylnitrosamine, a hepatic carcinogen, early-in-life Pcsk9 KO mice were more likely to develop liver cancer than WT mice. Conclusion: Pcsk9 KO mice on high-cholesterol diets developed increased hepatic free cholesterol and cholesterol crystals and fibrosing steatohepatitis with a higher predisposition to liver cancer compared with WT mice. Future studies should evaluate whether patients on long-term treatment with anti-PSCK9 monoclonal antibodies are at increased risk of hepatic steatosis, steatohepatitis or liver cancer, while accounting for concurrent use of statins.


Subject(s)
Non-alcoholic Fatty Liver Disease , Proprotein Convertase 9 , Animals , Carcinogenesis , Cholesterol , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Proprotein Convertase 9/genetics , Proprotein Convertases , Serine Endopeptidases
14.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: mdl-34806648

ABSTRACT

Human islet antigen reactive CD4+ memory T cells (IAR T cells) play a key role in the pathogenesis of autoimmune type 1 diabetes (T1D). Using single-cell RNA sequencing (scRNA-Seq) to identify T cell receptors (TCRs) in IAR T cells, we have identified a class of TCRs that share TCRα chains between individuals ("public" chains). We isolated IAR T cells from blood of healthy, new-onset T1D and established T1D donors using multiplexed CD154 enrichment and identified paired TCRαß sequences from 2767 individual cells. More than a quarter of cells shared TCR junctions between 2 or more cells ("expanded"), and 29/47 (~62%) of expanded TCRs tested showed specificity for islet antigen epitopes. Public TCRs sharing TCRα junctions were most prominent in new-onset T1D. Public TCR sequences were more germline like than expanded unique, or "private," TCRs, and had shorter junction sequences, suggestive of fewer random nucleotide insertions. Public TCRα junctions were often paired with mismatched TCRß junctions in TCRs; remarkably, a subset of these TCRs exhibited cross-reactivity toward distinct islet antigen peptides. Our findings demonstrate a prevalent population of IAR T cells with diverse specificities determined by TCRs with restricted TCRα junctions and germline-constrained antigen recognition properties. Since these "innate-like" TCRs differ from previously described immunodominant TCRß chains in autoimmunity, they have implications for fundamental studies of disease mechanisms. Self-reactive restricted TCRα chains and their associated epitopes should be considered in fundamental and translational investigations of TCRs in T1D.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Germ Cells/metabolism , Immunoglobulin alpha-Chains/metabolism , Receptors, Antigen, T-Cell/metabolism , Adolescent , Adult , Female , Humans , Male , Young Adult
15.
Mol Cell Biol ; 41(9): e0008521, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34124936

ABSTRACT

Immune health requires innate and adaptive immune cells to engage precisely balanced pro- and anti-inflammatory forces. We employ the concept of chemical immunophenotypes to classify small molecules functionally or mechanistically according to their patterns of effects on primary innate and adaptive immune cells. The high-specificity, low-toxicity cyclin-dependent kinase 8 (CDK8) inhibitor 16-didehydro-cortistatin A (DCA) exerts a distinct tolerogenic profile in both innate and adaptive immune cells. DCA promotes regulatory T cells (Treg) and Th2 differentiation while inhibiting Th1 and Th17 differentiation in both murine and human cells. This unique chemical immunophenotype led to mechanistic studies showing that DCA promotes Treg differentiation in part by regulating a previously undescribed CDK8-GATA3-FOXP3 pathway that regulates early pathways of Foxp3 expression. These results highlight previously unappreciated links between Treg and Th2 differentiation and extend our understanding of the transcription factors that regulate Treg differentiation and their temporal sequencing. These findings have significant implications for future mechanistic and translational studies of CDK8 and CDK8 inhibitors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Forkhead Transcription Factors/metabolism , GATA3 Transcription Factor/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Immune Tolerance/drug effects , Immunophenotyping , Isoquinolines/pharmacology , Adolescent , Adult , Animals , CD4-Positive T-Lymphocytes/drug effects , Cell Differentiation/drug effects , Cyclin-Dependent Kinase 8/metabolism , Humans , Immunity, Innate/drug effects , Mice, Inbred BALB C , Middle Aged , Phosphorylation/drug effects , Proto-Oncogene Proteins c-jun/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Young Adult
16.
Diabetes ; 70(4): 831-841, 2021 04.
Article in English | MEDLINE | ID: mdl-33741606

ABSTRACT

The goal of personalized medicine is to match the right drugs to the right patients at the right time. Personalized medicine has been most successful in cases where there is a clear genetic linkage between a disease and a therapy. This is not the case with type 1 diabetes (T1D), a genetically complex immune-mediated disease of ß-cell destruction. Researchers over decades have traced the natural history of disease sufficiently to use autoantibodies as predictive biomarkers for disease risk and to conduct successful clinical trials of disease-modifying therapy. Recent studies, however, have highlighted heterogeneity associated with progression, with nonuniform rate of insulin loss and distinct features of the peri-diagnostic period. Likewise, there is heterogeneity in immune profiles and outcomes in response to therapy. Unexpectedly, from these studies demonstrating perplexing complexity in progression and response to therapy, new biomarker-based principles are emerging for how to achieve personalized therapies for T1D. These include therapy timed to periods of disease activity, use of patient stratification biomarkers to align therapeutic target with disease endotype, pharmacodynamic biomarkers to achieve personalized dosing and appropriate combination therapies, and efficacy biomarkers for "treat-to-target" strategies. These principles provide a template for application of personalized medicine to complex diseases.


Subject(s)
Autoantibodies/metabolism , Biomarkers/metabolism , Diabetes Mellitus, Type 1/metabolism , Humans , Precision Medicine/methods
17.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33351781

ABSTRACT

Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction of pancreatic ß cells through immune perturbation and serve as resources to elucidate immunological mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA sequencing, we found that greater insulin C-peptide preservation was associated with a module of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus T cell activation and differentiation markers (PD-1 and CD28). These findings support previous evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while suggesting that multiple inhibitory mechanisms can promote this beneficial cell state.


Subject(s)
Alefacept/therapeutic use , C-Peptide/biosynthesis , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Adolescent , Adult , C-Peptide/genetics , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/classification , CD8-Positive T-Lymphocytes/metabolism , Child , Diabetes Mellitus, Type 1/metabolism , Double-Blind Method , Female , Humans , Immunologic Factors/therapeutic use , Immunologic Memory/genetics , Immunophenotyping , Killer Cells, Natural/immunology , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Receptors, Immunologic/metabolism , Young Adult
18.
Diabetologia ; 63(8): 1576-1587, 2020 08.
Article in English | MEDLINE | ID: mdl-32500289

ABSTRACT

AIMS/HYPOTHESIS: Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS: The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS: Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION: Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY: Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Immunity, Innate/physiology , Leukocytes, Mononuclear/metabolism , Monocytes/metabolism , Animals , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Enterotoxins/pharmacology , Female , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Interleukin-1/pharmacology , Leukocytes, Mononuclear/drug effects , Mice , Mice, Inbred NOD , Monocytes/drug effects
19.
Immunohorizons ; 4(1): 14-22, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974109

ABSTRACT

Mucosal-associated invariant T (MAIT) cells acquire effector function in response to proinflammatory signals, which synergize with TCR-mediated signals. We asked if cell-intrinsic regulatory mechanisms exist to curtail MAIT cell effector function akin to the activation-induced expression of inhibitory receptors by conventional T cells. We examined human MAIT cells from blood and oral mucosal tissues by RNA sequencing and found differential expression of immunoregulatory genes, including CTLA-4, by MAIT cells isolated from tissue. Using an ex vivo experimental setup, we demonstrate that inflammatory cytokines were sufficient to induce CTLA-4 expression on the MAIT cell surface in the absence of TCR signals. Even brief exposure to the cytokines IL-12, IL-15, and IL-18 was sufficient for sustained CTLA-4 expression by MAIT cells. These data suggest that control of CTLA-4 expression is fundamentally different between MAIT cells and conventional T cells. We propose that this mechanism serves to limit MAIT cell-mediated tissue damage.


Subject(s)
Antigens, Surface/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cytokines/immunology , Mucosal-Associated Invariant T Cells/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Blood/immunology , Female , Gene Expression/immunology , Humans , Inflammation/genetics , Male , Middle Aged , Mucous Membrane/immunology , Receptors, Antigen, T-Cell/immunology
20.
Nat Commun ; 11(1): 219, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924795

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive , Immunotherapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Clonal Selection, Antigen-Mediated/immunology , Humans , Kinetics , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Sequence Analysis, RNA , T-Lymphocytes, Cytotoxic/immunology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...