Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 750, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286800

ABSTRACT

The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.


Subject(s)
Dynorphins , Nucleus Accumbens , Phospholipid Ethers , Nucleus Accumbens/physiology , Hippocampus/physiology , Reward , Neurons/physiology
2.
eNeuro ; 10(3)2023 03.
Article in English | MEDLINE | ID: mdl-36849260

ABSTRACT

In females, the hippocampus, a critical brain region for coordination of learning, memory, and behavior, displays altered physiology and behavioral output across the estrous or menstrual cycle. However, the molecular effectors and cell types underlying these observed cyclic changes have only been partially characterized to date. Recently, profiling of mice null for the AMPA receptor trafficking gene Cnih3 have demonstrated estrous-dependent phenotypes in dorsal hippocampal synaptic plasticity, composition, and learning/memory. We therefore profiled dorsal hippocampal transcriptomes from female mice in each estrous cycle stage, and contrasted it with that of males, across wild-type (WT) and Cnih3 mutants. In wild types, we identified only subtle differences in gene expression between the sexes, while comparing estrous stages to one another revealed up to >1000 differentially expressed genes (DEGs). These estrous-responsive genes are especially enriched in gene markers of oligodendrocytes and the dentate gyrus, and in functional gene sets relating to estrogen response, potassium channels, and synaptic gene splicing. Surprisingly, Cnih3 knock-outs (KOs) showed far broader transcriptomic differences between estrous cycle stages and males. Moreover, Cnih3 knock-out drove subtle but extensive expression changes accentuating sex differential expression at diestrus and estrus. Altogether, our profiling highlights cell types and molecular systems potentially impacted by estrous-specific gene expression patterns in the adult dorsal hippocampus, enabling mechanistic hypothesis generation for future studies of sex-differential neuropsychiatric function and dysfunction. Moreover, these findings suggest an unrecognized role of Cnih3 in buffering against transcriptional effects of estrous, providing a candidate molecular mechanism to explain estrous-dependent phenotypes observed with Cnih3 loss.


Subject(s)
Estrous Cycle , Hippocampus , Animals , Female , Male , Mice , Estrous Cycle/genetics , Hippocampus/metabolism , Learning , Neuronal Plasticity , Transcriptome
3.
Front Behav Neurosci ; 16: 1035350, 2022.
Article in English | MEDLINE | ID: mdl-36505730

ABSTRACT

Introduction: Rates of relapse to drug use during abstinence are among the highest for opioid use disorder (OUD). In preclinical studies, reinstatement to drug-seeking has been extensively studied as a model of relapse-but the work has been primarily in males. We asked whether biological sex contributes to behaviors comprising self-administration of the prescription opioid oxycodone in rats, and we calculated the relative contribution of these behavioral measures to reinstatement in male and female rats. Materials and methods: Rats were trained to self-administer oxycodone (8 days, training phase), after which we examined oxycodone self-administration behaviors for an additional 14 days under three conditions in male and female rats: short access (ShA, 1 h/d), long access (LgA, 6 h/d), and saline self-administration. All rats were then tested for cue-induced reinstatement of drug-seeking after a 14-d forced abstinence period. We quantified the # of infusions, front-loading of drug intake, non-reinforced lever pressing, inter-infusion intervals, escalation of intake, and reinstatement responding on the active lever. Results: Both male and female rats in LgA and ShA conditions escalated oxycodone intake to a similar extent. However, males had higher levels of non-reinforced responding than females under LgA conditions, and females had greater levels of reinstatement responding than males. We then correlated each addiction-related measure listed above with reinstatement responding in males and females and ranked their respective relative contributions. Although the majority of behavioral measures associated with oxycodone self-administration did not show sex differences on their own, when analyzed together using partial least squares regression, their relative contributions to reinstatement were sex-dependent. Front-loading behavior was calculated to have the highest relative contribution to reinstatement in both sexes, with long and short inter-infusion intervals having the second greatest contribution in females and males, respectively. Discussion: Our results demonstrate sex differences in some oxycodone self-administration measures. More importantly, we demonstrate that a sex- dependent constellation of self-administration behaviors can predict the magnitude of reinstatement, which holds great promise for relapse prevention in people.

4.
Neuropsychopharmacology ; 47(10): 1755-1763, 2022 09.
Article in English | MEDLINE | ID: mdl-35835992

ABSTRACT

The current opioid epidemic has dramatically increased the number of children who are prenatally exposed to opioids, including oxycodone. A number of social and cognitive abnormalities have been documented in these children as they reach young adulthood. However, little is known about the mechanisms underlying developmental effects of prenatal opioid exposure. Microglia, the resident immune cells of the brain, respond to acute opioid exposure in adulthood. Moreover, microglia are known to sculpt neural circuits during typical development. Indeed, we recently found that microglial phagocytosis of dopamine D1 receptors (D1R) in the nucleus accumbens (NAc) is required for the natural developmental decline in NAc-D1R that occurs between adolescence and adulthood in rats. This microglial pruning occurs only in males, and is required for the normal developmental trajectory of social play behavior. However, virtually nothing is known as to whether this developmental program is altered by prenatal exposure to opioids. Here, we show in rats that maternal oxycodone self-administration during pregnancy leads to reduced adolescent microglial phagocytosis of D1R and subsequently higher D1R density within the NAc in adult male, but not female, offspring. Finally, we show prenatal and adult behavioral deficits in opioid-exposed offspring, including impaired extinction of oxycodone-conditioned place preference in males. This work demonstrates for the first time that microglia play a key role in translating prenatal opioid exposure to changes in neural systems and behavior.


Subject(s)
Analgesics, Opioid , Prenatal Exposure Delayed Effects , Analgesics, Opioid/pharmacology , Animals , Dopamine/pharmacology , Female , Humans , Male , Microglia/metabolism , Nucleus Accumbens , Oxycodone/pharmacology , Pregnancy , Rats , Receptors, Dopamine D1/metabolism , Reward
5.
Addict Biol ; 26(3): e12973, 2021 05.
Article in English | MEDLINE | ID: mdl-33078503

ABSTRACT

Withdrawal from opioid painkillers can produce short-lived physical symptoms and protracted psychological symptoms including anxiety and depressive-like states that often lead to opioid misuse and opioid use disorder (OUD). Studies testing the hypothesis that opioid withdrawal potentiates the reinforcing effects of opioid self-administration (SA) are largely inconclusive and have focused on males. Although some clinical evidence indicates that women are more likely than men to misuse opioids to self-medicate, preclinical studies in both sexes are lacking. Based on clinical reports, we hypothesized that withdrawal from escalating-dose morphine injections that approximates a prescription painkiller regimen would lead to increased oxycodone SA to a greater extent in female compared to male rats. After escalating-dose morphine (5-30 mg/kg or vehicle, twice/day for 12 days), rats underwent a 2-week abstinence period during which withdrawal signs were measured. The impact of this treatment was assessed on oxycodone SA acquisition, maintenance, dose response, and progressive ratio responding, with additional analyses to compare sexes. We found that both sexes expressed somatic withdrawal, whereas only males demonstrated hyperalgesia in the warm water tail flick assay. During SA acquisition, males with prior morphine exposure took significantly more oxycodone than females. Finally, females with prior morphine exposure demonstrated the lowest motivation to SA oxycodone in the progressive ratio test. Contrary to our initial hypothesis, our findings suggest that prior opioid exposure increases vulnerability to initiate misuse more in males and decreases the reinforcing efficacy of oxycodone in females.


Subject(s)
Morphine/administration & dosage , Narcotics/administration & dosage , Opioid-Related Disorders/drug therapy , Oxycodone/administration & dosage , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Self Administration , Substance Withdrawal Syndrome/psychology
6.
Int J Neuropsychopharmacol ; 22(11): 735-745, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31613314

ABSTRACT

BACKGROUND: New treatments for stress-related disorders including depression, anxiety, and substance use disorder are greatly needed. Kappa opioid receptors are expressed in the central nervous system, including areas implicated in analgesia and affective state. Although kappa opioid receptor agonists share the antinociceptive effects of mu opioid receptor agonists, they also tend to produce negative affective states. In contrast, selective kappa opioid receptor antagonists have antidepressant- and anxiolytic-like effects, stimulating interest in their therapeutic potential. The prototypical kappa opioid receptor antagonists (e.g., norBNI, JDTic) have an exceptionally long duration of action that complicates their use in humans, particularly in tests to establish safety. This study was designed to test dose- and time-course effects of novel kappa opioid receptor antagonists with the goal of identifying short-acting lead compounds for future medication development. METHODS: We screened 2 novel, highly selective kappa opioid receptor antagonists (CYM-52220 and CYM-52288) with oral efficacy in the warm water tail flick assay in rats to determine initial dose and time course effects. For comparison, we tested existing kappa opioid receptor antagonists JDTic and LY-2456302 (also known as CERC-501 or JNJ-67953964). RESULTS: In the tail flick assay, the rank order of duration of action for the antagonists was LY-2456302 < CYM-52288 < CYM-52220 << JDTic. Furthermore, LY-2456302 blocked the depressive (anhedonia-producing) effects of the kappa opioid receptor agonist U50,488 in the intracranial self-stimulation paradigm, albeit at a higher dose than that needed for analgesic blockade in the tail flick assay. CONCLUSIONS: These results suggest that structurally diverse kappa opioid receptor antagonists can have short-acting effects and that LY-2456302 reduces anhedonia as measured in the intracranial self-stimulation test.


Subject(s)
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Analgesics, Non-Narcotic/pharmacology , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Benzamides/pharmacology , Narcotic Antagonists/pharmacology , Piperidines/pharmacology , Pyrrolidines/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Tetrahydroisoquinolines/pharmacology , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage , Analgesics, Non-Narcotic/administration & dosage , Animals , Anti-Anxiety Agents/administration & dosage , Antidepressive Agents/administration & dosage , Benzamides/administration & dosage , Drug Development , Drug Evaluation, Preclinical , Male , Narcotic Antagonists/administration & dosage , Piperidines/administration & dosage , Pyrrolidines/administration & dosage , Rats , Rats, Sprague-Dawley , Receptors, Opioid, kappa/agonists , Tetrahydroisoquinolines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...