Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 69: 103079, 2023 06.
Article in English | MEDLINE | ID: mdl-36989620

ABSTRACT

Centronuclear myopathies (CNMs) are a group of inherited rare muscle disorders characterised by the abnormal position of the nucleus in the center of the muscle fiber. One of CNM is the X-Linked Myotubular Myopathy, caused by mutations in the myotubularin (MTM1) gene (XLMTM), characterised by profound muscle hypotonia and weakness, severe bulbar and respiratory involvement. Here, we generated an induced pluripotent stem cell (iPSC) line from a patient with a severe form of XLMTM. Dermal fibroblasts were reprogrammed to pluripotency using a non-integrating mRNA-based protocol. This new MTM1-mutant iPSC line could facilitate disease-modelling and therapy development studies for XLMTM.


Subject(s)
Induced Pluripotent Stem Cells , Myopathies, Structural, Congenital , Humans , Muscle Fibers, Skeletal , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Cell Nucleus , Muscle, Skeletal
2.
Nat Protoc ; 18(4): 1337-1376, 2023 04.
Article in English | MEDLINE | ID: mdl-36792780

ABSTRACT

Skeletal muscle is a complex tissue composed of multinucleated myofibers responsible for force generation that are supported by multiple cell types. Many severe and lethal disorders affect skeletal muscle; therefore, engineering models to reproduce such cellular complexity and function are instrumental for investigating muscle pathophysiology and developing therapies. Here, we detail the modular 3D bioengineering of multilineage skeletal muscles from human induced pluripotent stem cells, which are first differentiated into myogenic, neural and vascular progenitor cells and then combined within 3D hydrogels under tension to generate an aligned myofiber scaffold containing vascular networks and motor neurons. 3D bioengineered muscles recapitulate morphological and functional features of human skeletal muscle, including establishment of a pool of cells expressing muscle stem cell markers. Importantly, bioengineered muscles provide a high-fidelity platform to study muscle pathology, such as emergence of dysmorphic nuclei in muscular dystrophies caused by mutant lamins. The protocol is easy to follow for operators with cell culture experience and takes between 9 and 30 d, depending on the number of cell lineages in the construct. We also provide examples of applications of this advanced platform for testing gene and cell therapies in vitro, as well as for in vivo studies, providing proof of principle of its potential as a tool to develop next-generation neuromuscular or musculoskeletal therapies.


Subject(s)
Induced Pluripotent Stem Cells , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Cell Differentiation/physiology , Cell Lineage
3.
Mol Ther ; 30(2): 868-880, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34371181

ABSTRACT

Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Down-Regulation , Dynamin II/genetics , Mammals , Mice , Muscle, Skeletal/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Nerve Tissue Proteins/genetics , Phenotype , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Sci Transl Med ; 11(484)2019 03 20.
Article in English | MEDLINE | ID: mdl-30894500

ABSTRACT

Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1 -/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Focal Adhesions/pathology , Myopathies, Structural, Congenital/metabolism , Nerve Tissue Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Animals, Newborn , Focal Adhesions/metabolism , Humans , Integrin beta1/metabolism , Longevity , Male , Mice, Transgenic , Muscle Strength , Muscles/pathology , Muscles/physiopathology , Muscles/ultrastructure , Myopathies, Structural, Congenital/pathology , Myopathies, Structural, Congenital/physiopathology , Nuclear Proteins/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
5.
Mol Ther ; 26(4): 1082-1092, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29506908

ABSTRACT

Myotubular myopathy, or X-linked centronuclear myopathy, is a severe muscle disorder representing a significant burden for patients and their families. It is clinically characterized by neonatal and severe muscle weakness and atrophy. Mutations in the myotubularin (MTM1) gene cause myotubular myopathy, and no specific curative treatment is available. We previously found that dynamin 2 (DNM2) is upregulated in both Mtm1 knockout and patient muscle samples, whereas its reduction through antisense oligonucleotides rescues the clinical and histopathological features of this myopathy in mice. Here, we propose a novel approach targeting Dnm2 mRNA. We screened and validated in vitro and in vivo several short hairpin RNA (shRNA) sequences that efficiently target Dnm2 mRNA. A single intramuscular injection of AAV-shDnm2 resulted in long-term reduction of DNM2 protein level and restored muscle force, mass, histology, and myofiber ultrastructure and prevented molecular defects linked to the disease. Our results demonstrate a robust DNM2 knockdown and provide an alternative strategy based on reduction of DNM2 to treat myotubular myopathy.


Subject(s)
Dependovirus/genetics , Dynamin II/genetics , Genetic Therapy , Genetic Vectors/genetics , Myopathies, Structural, Congenital/genetics , RNA, Small Interfering/genetics , Animals , Disease Models, Animal , Gene Knockdown Techniques , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Immunohistochemistry , Injections, Intramuscular , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Myopathies, Structural, Congenital/pathology , Myopathies, Structural, Congenital/therapy , Phenotype , RNA Interference , RNA, Messenger , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...