Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 16(1): 96, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033117

ABSTRACT

BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Epigenesis, Genetic , Sirtuins , Sirtuins/genetics , Sirtuins/metabolism , Mice , Adipocytes/metabolism , Animals , Epigenesis, Genetic/genetics , Adipogenesis/genetics , Humans , Mutation , Obesity/genetics , Obesity/metabolism , Protein Processing, Post-Translational/genetics , Histones/metabolism , Histones/genetics
2.
Epigenomics ; 15(17): 863-877, 2023 09.
Article in English | MEDLINE | ID: mdl-37846557

ABSTRACT

Aim: Human induced pluripotent stem cells (iPSCs) are inefficiently derived from somatic cells by overexpression of defined transcription factors. Overexpression of H2A histone variant macroH2A1.1, but not macroH2A1.2, leads to increased iPSC reprogramming by unclear mechanisms. Materials & methods: Cleavage under targets and tagmentation (CUT&Tag) allows robust epigenomic profiling of a low cell number. We performed an integrative CUT&Tag-RNA-Seq analysis of macroH2A1-dependent orchestration of iPSCs reprogramming using human endothelial cells. Results: We demonstrate wider genome occupancy, predicted transcription factors binding, and gene expression regulated by macroH2A1.1 during reprogramming, compared to macroH2A1.2. MacroH2A1.1, previously associated with neurodegenerative pathologies, specifically activated ectoderm/neural processes. Conclusion: CUT&Tag and RNA-Seq data integration is a powerful tool to investigate the epigenetic mechanisms occurring during cell reprogramming.


Subject(s)
Histones , Induced Pluripotent Stem Cells , Humans , Histones/metabolism , Induced Pluripotent Stem Cells/metabolism , RNA-Seq , Endothelial Cells/metabolism , Cellular Reprogramming/genetics , Transcription Factors/genetics
3.
Nat Commun ; 14(1): 5058, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598215

ABSTRACT

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics.


Subject(s)
Amino Acids , Mutation, Missense , Humans , Mutation , Machine Learning , Mitochondria/genetics
4.
Front Bioinform ; 2: 1045368, 2022.
Article in English | MEDLINE | ID: mdl-36438625

ABSTRACT

Protein Structure Networks (PSNs) are a well-known mathematical model for estimation and analysis of the three-dimensional protein structure. Investigating the topological architecture of PSNs may help identify the crucial amino acid residues for protein stability and protein-protein interactions, as well as deduce any possible mutational effects. But because proteins go through conformational changes to give rise to essential biological functions, this has to be done dynamically over time. The most effective method to describe protein dynamics is molecular dynamics simulation, with the most popular software programs for manipulating simulations to infer interaction networks being RING, MD-TASK, and NAPS. Here, we compare the computational approaches used by these three tools-all of which are accessible as web servers-to understand the pathogenicity of missense mutations and talk about their potential applications as well as their advantages and disadvantages.

5.
Comput Struct Biotechnol J ; 20: 3151-3160, 2022.
Article in English | MEDLINE | ID: mdl-35782738

ABSTRACT

KDM6A is the disease causative gene of type 2 Kabuki Syndrome, a rare multisystem disease; it is also a known cancer driver gene, with multiple somatic mutations found in a few cancer types. In this study, we looked at eleven missense variants in lung squamous cell carcinoma, one of the most common lung cancer subtypes, to see how they affect the KDM6A catalytic mechanisms. We found that they influence the interaction with histone H3 and the exposure of the trimethylated Lys27, which is critical for wild-type physiological function to varying degrees, by altering the conformational transition.

6.
Hum Mutat ; 43(9): 1201-1215, 2022 09.
Article in English | MEDLINE | ID: mdl-35583122

ABSTRACT

The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.


Subject(s)
MicroRNAs , Base Sequence , Computational Biology/methods , Genome, Human/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Nucleotides , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL