Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(27): 9204-9209, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31132208

ABSTRACT

Synthesis of low-dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high-yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent-grade common sodium-containing compounds, including NaCl, NaHCO3 , Na2 CO3 , and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na-based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal-free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.

2.
Carbon N Y ; 125: 63-75, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29170562

ABSTRACT

As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...