Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Front Oncol ; 14: 1437542, 2024.
Article in English | MEDLINE | ID: mdl-39346726

ABSTRACT

Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.

2.
Noncoding RNA ; 10(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39195572

ABSTRACT

This is a mini-review capturing the views and opinions of selected participants at the 2021 IEEE BIBM 3rd Annual LncRNA Workshop, held in Dubai, UAE. The views and opinions are expressed on five broad themes related to problems in lncRNA, namely, challenges in the computational analysis of lncRNAs, lncRNAs and cancer, lncRNAs in sports, lncRNAs and COVID-19, and lncRNAs in human brain activity.

4.
Epilepsia ; 65(6): 1491-1511, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687769

ABSTRACT

Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.


Subject(s)
Epilepsy , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Epilepsy/genetics , Animals , Brain/metabolism
5.
Genes Nutr ; 19(1): 5, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475720

ABSTRACT

A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.

6.
J Mol Neurosci ; 73(9-10): 738-750, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37668894

ABSTRACT

Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Humans , Genetic Predisposition to Disease , DNA Methylation , Cognitive Dysfunction/genetics , Gene Expression , Intelligence , RNA, Messenger/genetics , RNA, Messenger/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Transcription Factor 4/genetics , Transcription Factor 4/metabolism
7.
Noncoding RNA ; 9(2)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37104004

ABSTRACT

Long non-coding RNAs (lncRNAs) play important roles in the maintenance of metabolic homeostasis. Recently, many studies have suggested that lncRNAs, such as Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) and Imprinted Maternally Expressed Transcript (H19), might participate in the pathogenesis of metabolic disorders such as obesity. We conducted a case-control study with 150 Russian children and adolescents aged between 5 and 17 years old in order to assess the statistical association between the single nucleotide polymorphisms (SNPs) rs3200401 in MALAT1 and rs217727 in H19, and the risk of developing obesity in this population. We further explored the possible association of rs3200401 and rs217727 with BMI Z-score and insulin resistance. The MALAT1 rs3200401 and H19 rs217727 SNPs were genotyped using Taqman SNP genotyping assay. The MALAT1 rs3200401 SNP was identified as a risk factor for childhood obesity (p < 0.05) under the dominant and allelic models, and the CT heterozygous genotype was associated with the risk of increased BMI and with insulin resistance. The H19 rs217727 SNP had no significant association with obesity risk (all p > 0.05). Our findings thus suggest that MALAT1 SNP rs3200401 is a potential indicator of obesity susceptibility and pathogenesis in children and adolescents.

8.
Noncoding RNA ; 9(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36649033

ABSTRACT

The human brain has evolved to have extraordinary capabilities, enabling complex behaviors. The uniqueness of the human brain is increasingly posited to be due in part to the functions of primate-specific, including human-specific, long non-coding RNA (lncRNA) genes, systemically less conserved than protein-coding genes in evolution. Patients who have surgery for drug-resistant epilepsy are subjected to extensive electrical recordings of the brain tissue that is subsequently removed in order to treat their epilepsy. Precise localization of brain tissues with distinct electrical properties offers a rare opportunity to explore the effects of brain activity on gene expression. Here, we identified 231 co-regulated, activity-dependent lncRNAs within the human MAPK signaling cascade. Six lncRNAs, four of which were antisense to known protein-coding genes, were further examined because of their high expression and potential impact on the disease phenotype. Using a model of repeated depolarizations in human neuronal-like cells (Sh-SY5Y), we show that five out of six lncRNAs were electrical activity-dependent, with three of four antisense lncRNAs having reciprocal expression patterns relative to their protein-coding gene partners. Some were directly regulated by MAPK signaling, while others effectively downregulated the expression of the protein-coding genes encoded on the opposite strands of their genomic loci. These lncRNAs, therefore, likely contribute to highly evolved and primate-specific human brain regulatory functions that could be therapeutically modulated to treat epilepsy.

9.
Cancers (Basel) ; 14(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35884374

ABSTRACT

Numerous epidemiological studies place patients with T2D at a higher risk for cancer. Many risk factors, such as obesity, ageing, poor diet and low physical activity, are shared between T2D and cancer; however, the biological mechanisms linking the two diseases remain largely unknown. The advent of genome wide association studies (GWAS) revealed large numbers of genetic variants associated with both T2D and cancer. Most significant disease-associated variants reside in non-coding regions of the genome. Several studies show that single nucleotide polymorphisms (SNPs) at or near long non-coding RNA (lncRNA) genes may impact the susceptibility to T2D and cancer. Therefore, the identification of genetic variants predisposing individuals to both T2D and cancer may help explain the increased risk of cancer in T2D patients. We aim to investigate whether lncRNA genetic variants with significant diabetes and cancer associations overlap in the UAE population. We first performed an annotation-based analysis of UAE T2D GWAS, confirming the high prevalence of variants at or near non-coding RNA genes. We then explored whether these T2D SNPs in lncRNAs were relevant to cancer. We highlighted six non-coding genetic variants, jointly reaching statistical significance in T2D and cancer, implicating a shared genetic architecture between the two diseases in the UAE population.

10.
Genomics ; 114(4): 110421, 2022 07.
Article in English | MEDLINE | ID: mdl-35779786

ABSTRACT

Estrogen drives key transcriptional changes in breast cancer and stimulates breast cancer cells' growth with multiple mechanisms to coordinate transcription and translation. In addition to protein-coding transcripts, estrogen can regulate long non-coding RNA (lncRNA) transcripts, plus diverse non-coding RNAs including antisense, enhancer, and intergenic. LncRNA genes comprise the majority of human genes. The accidental, or regulated, translation of their short open reading frames by ribosomes remains a controversial topic. Here we report for the first time an integrated analysis of RNA abundance and ribosome occupancy level, using Ribo-seq combined with RNA-Seq, in the estrogen-responsive, estrogen receptor α positive, human breast cancer cell model MCF7, before and after hormone treatment. Translational profiling can determine, in an unbiased manner, which fraction of the genome is actually translated into proteins, as well as resolving whether transcription and translation respond concurrently, or differentially, to estrogen treatment. Our data showed specific transcripts more robustly detected in RNA-Seq than in the ribosome-profiling data, and vice versa, suggesting distinct gene-specific estrogen responses at the transcriptional and the translational level, respectively. Here, we showed that estrogen stimulation affects the expression levels of numerous lncRNAs, but not their association with ribosomes, and that most lncRNAs are not ribosome-bound. For the first time, we also demonstrated the transcriptional and translational response of expressed pseudogenes to estrogen, pointing to new perspectives for drug-target development in breast cancer in the future.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Humans , Pseudogenes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ribosomes/genetics
12.
Front Genet ; 13: 970619, 2022.
Article in English | MEDLINE | ID: mdl-37082114

ABSTRACT

Autoantibodies against mitochondrial-derived antigens play a key role in chronic tissue inflammation in autoimmune disorders and cancers. Here, we identify autoreactive nuclear genomic DNA (nDNA)-encoded mitochondrial gene products (GAPDH, PKM2, GSTP1, SPATA5, MFF, TSPOAP1, PHB2, COA4, and HAGH) recognized by breast cancer (BC) patients' sera as nonself, supporting a direct relationship of mitochondrial autoimmunity to breast carcinogenesis. Autoreactivity of multiple nDNA-encoded mitochondrial gene products was mapped to protein-coding regions, 3' untranslated regions (UTRs), as well as introns. In addition, autoantibodies in BC sera targeted intergenic sequences that may be parts of long non-coding RNA (lncRNA) genes, including LINC02381 and other putative lncRNA neighbors of the protein-coding genes ERCC4, CXCL13, SOX3, PCDH1, EDDM3B, and GRB2. Increasing evidence indicates that lncRNAs play a key role in carcinogenesis. Consistent with this, our findings suggest that lncRNAs, as well as mRNAs of nDNA-encoded mitochondrial genes, mechanistically contribute to BC progression. This work supports a new paradigm of breast carcinogenesis based on a globally dysfunctional genome with altered function of multiple mitochondrial and non-mitochondrial oncogenic pathways caused by the effects of autoreactivity-induced dysregulation of multiple genes and their products. This autoimmunity-based model of carcinogenesis will open novel avenues for BC treatment.

13.
Front Cell Dev Biol ; 9: 725821, 2021.
Article in English | MEDLINE | ID: mdl-34869313

ABSTRACT

The recent increases in cancer incidences have been linked to lifestyle changes that result in obesity and metabolic syndrome. It is now evident that these trends are associated with the profound changes that occur in the intestinal microbiome, producing altered microbial population signatures that interact, directly or indirectly, with potentially pro-carcinogenic molecular pathways of transcription, proliferation, and inflammation. The effects of the entire gut microbial population on overall health are complex, but individual bacteria are known to play important and definable roles. Recent detailed examinations of a large number of subjects show a tight correlation between habitual diets, fecal microbiome signatures, and markers of metabolic health. Diets that score higher in healthfulness or diversity such as plant-based diets, have altered ratios of specific bacteria, including an increase in short-chain fatty acid producers, which in turn have been linked to improved metabolic markers and lowered cancer risk. Contrarily, numerous studies have implicated less healthy, lower-scoring diets such as the Western diet with reduced intestinal epithelial defenses and promotion of specific bacteria that affect carcinogenic pathways. In this review, we will describe how different dietary patterns affect microbial populations in the gut and illustrate the subsequent impact of bacterial products and metabolites on molecular pathways of cancer development, both locally in the gut and systemically in distant organs.

14.
Front Genet ; 12: 760849, 2021.
Article in English | MEDLINE | ID: mdl-34880903

ABSTRACT

In the post-genomic era, our understanding of the molecular regulators of physiologic and pathologic processes in pregnancy is expanding at the whole-genome level. Longitudinal changes in the known protein-coding transcriptome during normal pregnancy, which we recently reported (Gomez-Lopez et al., 2019), have improved our definition of the major operant networks, yet pregnancy-related functions of the non-coding RNA transcriptome remain poorly understood. A key finding of the ENCODE (Encyclopedia of DNA Elements) Consortium, the successor of the Human Genome Project, was that the human genome contains approximately 60,000 genes, the majority of which do not encode proteins. The total transcriptional output of non-protein-coding RNA genes, collectively referred to as the non-coding transcriptome, is comprised mainly of long non-coding RNA (lncRNA) transcripts (Derrien et al., 2012). Although the ncRNA transcriptome eclipses its protein-coding counterpart in abundance, it has until recently lacked a comprehensive, unbiased, genome-scale characterization over the timecourse of normal human pregnancy. Here, we annotated, characterized, and selectively validated the longitudinal changes in the non-coding transcriptome of maternal whole blood during normal pregnancy to term. We identified nine long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs) as well as lncRNAs antisense to or otherwise in the immediate vicinity of protein-coding genes, that were differentially expressed with advancing gestation in normal pregnancy: AL355711, BC039551 (expressed mainly in the placenta), JHDM1D-AS1, A2M-AS1, MANEA-AS1, NR_034004, LINC00649, LINC00861, and LINC01094. By cross-referencing our dataset against major public pseudogene catalogs, we also identified six transcribed pseudogenes that were differentially expressed over time during normal pregnancy in maternal blood: UBBP4, FOXO3B, two Makorin (MKRN) pseudogenes (MKRN9P and LOC441455), PSME2P2, and YBX3P1. We also identified three non-coding RNAs belonging to other classes that were modulated during gestation: the microRNA MIR4439, the small nucleolar RNA (snoRNA) SNORD41, and the small Cajal-body specific ncRNA SCARNA2. The expression profiles of most hits were broadly suggestive of functions in pregnancy. These time-dependent changes of the non-coding transcriptome during normal pregnancy, which may confer specific regulatory impacts on their protein-coding gene targets, will facilitate a deeper molecular understanding of pregnancy and lncRNA-mediated molecular pathways at the maternal-fetal interface and of how these pathways impact maternal and fetal health.

15.
Noncoding RNA ; 7(1)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801496

ABSTRACT

Sense-antisense interactions of long and short RNAs in human cells are integral to post-transcriptional gene regulation, in particular that of mRNAs by microRNAs. Many viruses, including severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 (the causative agent of coronavirus disease 2019, COVID-19), have RNA genomes, and interactions between host and viral RNAs, while known to be functional in other viral diseases, have not yet been investigated in COVID-19. To remedy this gap in knowledge, we present miRCOVID-19, a computational meta-analysis framework identifying the predicted binding sites of human microRNAs along the SARS-CoV-2 RNA genome. To highlight the potential relevance of SARS-CoV-2-genome-complementary miRNAs to COVID-19 pathogenesis, we assessed their expression in COVID-19-relevant tissues using public transcriptome data. miRCOVID-19 identified 14 high-confidence mature miRNAs that are highly likely to interact with the SARS-CoV-2 genome and are expressed in diverse respiratory epithelial and immune cell types that are relevant to COVID-19 pathogenesis. As a proof of principle, we have shown that human miR-122, a previously known co-factor of another RNA virus, the hepatitis C virus (HCV) whose genome it binds as a prerequisite for pathogenesis, was predicted to also bind the SARS-CoV-2 RNA genome with high affinity, suggesting the perspective of repurposing anti-HCV RNA-based drugs, such as Miravirsen, to treat COVID-19. Our study is the first to identify all high-confidence binding sites of human miRNAs in the SARS-CoV-2 genome using multiple tools. Our work directly facilitates experimental validation of the reported targets, which would accelerate RNA-based drug discovery for COVID-19 and has the potential to provide new avenues for treating symptomatic COVID-19, and block SARS-CoV-2 replication, in humans.

16.
Sci Rep ; 10(1): 21781, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311559

ABSTRACT

Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Serum Response Factor/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic , YY1 Transcription Factor/metabolism , Animals , Male , Mice , Rats , Rats, Sprague-Dawley
17.
Noncoding RNA ; 6(4)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977531

ABSTRACT

Non-coding RNAs (ncRNAs) are essential players in many cellular processes, from normal development to oncogenic transformation. Initially, ncRNAs were defined as transcripts that lacked an open reading frame (ORF). However, multiple lines of evidence suggest that certain ncRNAs encode small peptides of less than 100 amino acids. The sequences encoding these peptides are known as small open reading frames (smORFs), many initiating with the traditional AUG start codon but terminating with atypical stop codons, suggesting a different biogenesis. The ncRNA-encoded peptides (ncPEPs) are gradually becoming appreciated as a new class of functional molecules that contribute to diverse cellular processes, and are deregulated in different diseases contributing to pathogenesis. As multiple publications have identified unique ncPEPs, we appreciated the need for assembling a new web resource that could gather information about these functional ncPEPs. We developed FuncPEP, a new database of functional ncRNA encoded peptides, containing all experimentally validated and functionally characterized ncPEPs. Currently, FuncPEP includes a comprehensive annotation of 112 functional ncPEPs and specific details regarding the ncRNA transcripts that encode these peptides. We believe that FuncPEP will serve as a platform for further deciphering the biologic significance and medical use of ncPEPs.

18.
Front Genet ; 11: 615, 2020.
Article in English | MEDLINE | ID: mdl-32754192

ABSTRACT

AIMS: Causal transcripts at genomic loci associated with type 2 diabetes (T2D) are mostly unknown. The chr8p23.1 variant rs4841132, associated with an insulin-resistant diabetes risk phenotype, lies in the second exon of a long non-coding RNA (lncRNA) gene, LOC157273, located 175 kilobases from PPP1R3B, which encodes a key protein regulating insulin-mediated hepatic glycogen storage in humans. We hypothesized that LOC157273 regulates expression of PPP1R3B in human hepatocytes. METHODS: We tested our hypothesis using Stellaris fluorescent in situ hybridization to assess subcellular localization of LOC157273; small interfering RNA (siRNA) knockdown of LOC157273, followed by RT-PCR to quantify LOC157273 and PPP1R3B expression; RNA-seq to quantify the whole-transcriptome gene expression response to LOC157273 knockdown; and an insulin-stimulated assay to measure hepatocyte glycogen deposition before and after knockdown. RESULTS: We found that siRNA knockdown decreased LOC157273 transcript levels by approximately 80%, increased PPP1R3B mRNA levels by 1.7-fold, and increased glycogen deposition by >50% in primary human hepatocytes. An A/G heterozygous carrier (vs. three G/G carriers) had reduced LOC157273 abundance due to reduced transcription of the A allele and increased PPP1R3B expression and glycogen deposition. CONCLUSION: We show that the lncRNA LOC157273 is a negative regulator of PPP1R3B expression and glycogen deposition in human hepatocytes and a causal transcript at an insulin-resistant T2D risk locus.

19.
Noncoding RNA ; 5(3)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533355

ABSTRACT

Long non-coding RNA (lncRNA) genes encode non-messenger RNAs that lack open reading frames (ORFs) longer than 300 nucleotides, lack evolutionary conservation in their shorter ORFs, and do not belong to any classical non-coding RNA category. LncRNA genes equal, or exceed in number, protein-coding genes in mammalian genomes. Most mammalian genomes harbor ~20,000 protein-coding genes that give rise to conventional messenger RNA (mRNA) transcripts. These coding genes exhibit sweeping evolutionary conservation in their ORFs. LncRNAs function via different mechanisms, including but not limited to: (1) serving as "enhancer" RNAs regulating nearby coding genes in cis; (2) functioning as scaffolds to create ribonucleoprotein (RNP) complexes; (3) serving as sponges for microRNAs; (4) acting as ribo-mimics of consensus transcription factors binding sites in genomic DNA; (5) hybridizing to other nucleic acids (mRNAs and genomic DNA); and, rarely, (6) as templates encoding small open reading frames (smORFs) that may encode short proteins. Any given lncRNA may have more than one of these functions. This review focuses on one fascinating case-the growth-arrest-specific (GAS)-5 gene, encoding a complicated repertoire of alternatively-spliced lncRNA isoforms. GAS5 is also a host gene of numerous small nucleolar (sno) RNAs, which are processed from its introns. Publications about this lncRNA date back over three decades, covering its role in cell proliferation, cell differentiation, and cancer. The GAS5 story has drawn in contributions from prominent molecular geneticists who attempted to define its tumor suppressor function in mechanistic terms. The evidence suggests that rodent Gas5 and human GAS5 functions may be different, despite the conserved multi-exonic architecture featuring intronic snoRNAs, and positional conservation on syntenic chromosomal regions indicating that the rodent Gas5 gene is the true ortholog of the GAS5 gene in man and other apes. There is no single answer to the molecular mechanism of GAS5 action. Our goal here is to summarize competing, not mutually exclusive, mechanistic explanations of GAS5 function that have compelling experimental support.

20.
Pharmacogenomics J ; 19(1): 97-108, 2019 02.
Article in English | MEDLINE | ID: mdl-29855607

ABSTRACT

We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10-8) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10-8; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.


Subject(s)
Black or African American/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Single Nucleotide/genetics , Potassium/blood , Sodium Chloride Symporter Inhibitors/therapeutic use , White People/genetics , Aged , Antihypertensive Agents/therapeutic use , Chromosomes, Human, Pair 5/genetics , Europe , Female , Genome-Wide Association Study/methods , Genotype , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL