Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3110, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600112

ABSTRACT

Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.


Subject(s)
Homeodomain Proteins , Transcription Factors , Humans , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , DNA/metabolism , Mutation , Models, Molecular
2.
Cell ; 186(17): 3632-3641.e10, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37516108

ABSTRACT

The endopeptidase ADAM10 is a critical catalyst for the regulated proteolysis of key drivers of mammalian development, physiology, and non-amyloidogenic cleavage of APP as the primary α-secretase. ADAM10 function requires the formation of a complex with a C8-tetraspanin protein, but how tetraspanin binding enables positioning of the enzyme active site for membrane-proximal cleavage remains unknown. We present here a cryo-EM structure of a vFab-ADAM10-Tspan15 complex, which shows that Tspan15 binding relieves ADAM10 autoinhibition and acts as a molecular measuring stick to position the enzyme active site about 20 Å from the plasma membrane for membrane-proximal substrate cleavage. Cell-based assays of N-cadherin shedding establish that the positioning of the active site by the interface between the ADAM10 catalytic domain and the bound tetraspanin influences selection of the preferred cleavage site. Together, these studies reveal the molecular mechanism underlying ADAM10 proteolysis at membrane-proximal sites and offer a roadmap for its modulation in disease.


Subject(s)
ADAM10 Protein , Animals , ADAM10 Protein/chemistry , ADAM10 Protein/metabolism , ADAM10 Protein/ultrastructure , Amyloid Precursor Protein Secretases/chemistry , Mammals/metabolism , Proteolysis , Tetraspanins/metabolism , Humans
3.
Nat Commun ; 14(1): 2490, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120430

ABSTRACT

Adhesion G Protein Coupled Receptors (aGPCRs) have evolved an activation mechanism to translate extracellular force into liberation of a tethered agonist (TA) to effect cell signalling. We report here that ADGRF1 can signal through all major G protein classes and identify the structural basis for a previously reported Gαq preference by cryo-EM. Our structure shows that Gαq preference in ADGRF1 may derive from tighter packing at the conserved F569 of the TA, altering contacts between TM helix I and VII, with a concurrent rearrangement of TM helix VII and helix VIII at the site of Gα recruitment. Mutational studies of the interface and of contact residues within the 7TM domain identify residues critical for signalling, and suggest that Gαs signalling is more sensitive to mutation of TA or binding site residues than Gαq. Our work advances the detailed molecular understanding of aGPCR TA activation, identifying features that potentially explain preferential signal modulation.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Binding Sites , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Protein Domains , Protein Binding
4.
Structure ; 30(2): 206-214.e4, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34739841

ABSTRACT

Tetraspanins are four-pass transmembrane proteins that function by regulating trafficking of partner proteins and organizing signaling complexes in the membrane. Tspan15, one of a six-member TspanC8 subfamily, forms a complex that regulates the trafficking, maturation, and substrate selectivity of the transmembrane protease ADAM10, an essential enzyme in mammalian physiology that cleaves a wide variety of membrane-anchored substrates, including Notch receptors, amyloid precursor protein, cadherins, and growth factors. We present here crystal structures of the Tspan15 large extracellular loop (LEL) required for functional association with ADAM10 both in isolation and in complex with the Fab fragment of an anti-Tspan15 antibody. Comparison of the Tspan15 LEL with other tetraspanin LEL structures shows that a core helical framework buttresses a variable region that structurally diverges among LELs. Using co-immunoprecipitation and a cellular N-cadherin cleavage assay, we identify a site on Tspan15 required for both ADAM10 binding and promoting substrate cleavage.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Membrane Proteins/metabolism , Mutation , Tetraspanins/chemistry , Tetraspanins/metabolism , Binding Sites , Cell Line , Crystallography, X-Ray , Gene Knockout Techniques , Humans , Models, Molecular , Protein Binding , Protein Structure, Secondary , Tetraspanins/genetics
5.
Elife ; 92020 09 16.
Article in English | MEDLINE | ID: mdl-32936072

ABSTRACT

Notch signaling regulates squamous cell proliferation and differentiation and is frequently disrupted in squamous cell carcinomas, in which Notch is tumor suppressive. Here, we show that conditional activation of Notch in squamous cells activates a context-specific gene expression program through lineage-specific regulatory elements. Among direct Notch target genes are multiple DNA damage response genes, including IER5, which we show is required for Notch-induced differentiation of squamous carcinoma cells and TERT-immortalized keratinocytes. IER5 is epistatic to PPP2R2A, a gene that encodes the PP2A B55α subunit, which we show interacts with IER5 in cells and in purified systems. Thus, Notch and DNA-damage response pathways converge in squamous cells on common genes that promote differentiation, which may serve to eliminate damaged cells from the proliferative pool. We further propose that crosstalk involving Notch and PP2A enables tuning and integration of Notch signaling with other pathways that regulate squamous differentiation.


Subject(s)
Cell Differentiation/genetics , Epithelial Cells/metabolism , Immediate-Early Proteins/metabolism , Nuclear Proteins/metabolism , Receptors, Notch/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Line , DNA Damage/genetics , Humans , Immediate-Early Proteins/genetics , Keratinocytes/metabolism , Nuclear Proteins/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Receptors, Notch/genetics , Signal Transduction/genetics
6.
Proc Natl Acad Sci U S A ; 116(40): 19924-19929, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527235

ABSTRACT

MitoNEET is an outer mitochondrial membrane protein essential for sensing and regulation of iron and reactive oxygen species (ROS) homeostasis. It is a key player in multiple human maladies including diabetes, cancer, neurodegeneration, and Parkinson's diseases. In healthy cells, mitoNEET receives its clusters from the mitochondrion and transfers them to acceptor proteins in a process that could be altered by drugs or during illness. Here, we report that mitoNEET regulates the outer-mitochondrial membrane (OMM) protein voltage-dependent anion channel 1 (VDAC1). VDAC1 is a crucial player in the cross talk between the mitochondria and the cytosol. VDAC proteins function to regulate metabolites, ions, ROS, and fatty acid transport, as well as function as a "governator" sentry for the transport of metabolites and ions between the cytosol and the mitochondria. We find that the redox-sensitive [2Fe-2S] cluster protein mitoNEET gates VDAC1 when mitoNEET is oxidized. Addition of the VDAC inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) prevents both mitoNEET binding in vitro and mitoNEET-dependent mitochondrial iron accumulation in situ. We find that the DIDS inhibitor does not alter the redox state of MitoNEET. Taken together, our data indicate that mitoNEET regulates VDAC in a redox-dependent manner in cells, closing the pore and likely disrupting VDAC's flow of metabolites.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Voltage-Dependent Anion Channel 1/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/chemistry , Animals , Apoptosis , Binding Sites , Dimyristoylphosphatidylcholine/chemistry , Ferroptosis , Homeostasis , Humans , Iron/chemistry , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Kinetics , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Oxygen/chemistry , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Sheep
7.
Biochemistry ; 58(17): 2199-2207, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30938154

ABSTRACT

The ability to precisely control protein complex formation has high utility in the expanding field of biomaterials. Driving protein-protein binding through metal-ligand bridging interactions is a promising method of achieving this goal. Furthermore, the capacity to precisely regulate both complex formation and dissociation enables additional control not available with constitutive protein complexes. Here we describe the design of three metal-controlled protein dimers that are completely monomeric in the absence of metal yet form high-affinity symmetric homodimers in the presence of zinc sulfate. The scaffold used for the designed dimers is the ß1 domain of streptococcal protein G. In addition to forming high-affinity dimers in the presence of metal, the complexes also dissociate upon addition of EDTA. Biophysical characterization revealed that the proteins maintain relatively high thermal stability, bind with high affinity, and are completely monodisperse in the monomeric and dimeric states. High-resolution crystal structures revealed that the dimers adopt the target structure and that the designed metal-binding histidine residues successfully bind zinc and function to drive dimer formation.


Subject(s)
Bacterial Proteins/chemistry , Metals/chemistry , Protein Domains , Protein Multimerization , Bacterial Proteins/metabolism , Binding, Competitive , Circular Dichroism , Crystallography, X-Ray , Drug Design , Metals/metabolism , Models, Molecular , Protein Binding , Zinc Sulfate/chemistry , Zinc Sulfate/metabolism
8.
Proc Natl Acad Sci U S A ; 115(2): 272-277, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29259115

ABSTRACT

The NEET family is a relatively new class of three related [2Fe-2S] proteins (CISD1-3), important in human health and disease. While there has been growing interest in the homodimeric gene products of CISD1 (mitoNEET) and CISD2 (NAF-1), the importance of the inner mitochondrial CISD3 protein has only recently been recognized in cancer. The CISD3 gene encodes for a monomeric protein that contains two [2Fe-2S] CDGSH motifs, which we term mitochondrial inner NEET protein (MiNT). It folds with a pseudosymmetrical fold that provides a hydrophobic motif on one side and a relatively hydrophilic surface on the diametrically opposed surface. Interestingly, as shown by molecular dynamics simulation, the protein displays distinct asymmetrical backbone motions, unlike its homodimeric counterparts that face the cytosolic side of the outer mitochondrial membrane/endoplasmic reticulum (ER). However, like its counterparts, our biological studies indicate that knockdown of MiNT leads to increased accumulation of mitochondrial labile iron, as well as increased mitochondrial reactive oxygen production. Taken together, our study suggests that the MiNT protein functions in the same pathway as its homodimeric counterparts (mitoNEET and NAF-1), and could be a key player in this pathway within the mitochondria. As such, it represents a target for anticancer or antidiabetic drug development.


Subject(s)
Iron-Sulfur Proteins/metabolism , Iron/metabolism , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Humans , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Kinetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Dynamics Simulation , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Domains , Protein Folding , RNA Interference
9.
J Phys Chem B ; 121(47): 10648-10656, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29086562

ABSTRACT

The NEET proteins are a novel family of iron-sulfur proteins characterized by an unusual three cysteine and one histidine coordinated [2Fe-2S] cluster. Aberrant cluster release, facilitated by the breakage of the Fe-N bond, is implicated in a variety of human diseases, including cancer. Here, the molecular dynamics in the multi-microsecond timescale, along with quantum chemical calculations, on two representative members of the family (the human NAF-1 and mitoNEET proteins), show that the loss of the cluster is associated with a dramatic decrease in secondary and tertiary structure. In addition, the calculations provide a mechanism for cluster release and clarify, for the first time, crucial differences existing between the two proteins, which are reflected in the experimentally observed difference in the pH-dependent cluster reactivity. The reliability of our conclusions is established by an extensive comparison with the NMR data of the solution proteins, in part measured in this work.


Subject(s)
Mitochondrial Proteins/chemistry , Molecular Dynamics Simulation , Ribonucleoproteins/chemistry , Humans , Protein Conformation , Quantum Theory
10.
PLoS One ; 10(10): e0139699, 2015.
Article in English | MEDLINE | ID: mdl-26448442

ABSTRACT

Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Binding Sites , Dimerization , Electron Transport , Humans , Interferometry , Intracellular Signaling Peptides and Proteins/chemistry , Kinetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
11.
Proc Natl Acad Sci U S A ; 112(12): 3698-703, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25762074

ABSTRACT

Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster's Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson-metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Mitochondrial Proteins/chemistry , Ribonucleoproteins/chemistry , Breast Neoplasms/chemistry , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cluster Analysis , Drug Design , Female , Humans , Iron-Sulfur Proteins/chemistry , MCF-7 Cells , Molecular Conformation , Molecular Docking Simulation , Molecular Targeted Therapy , Software , Xanthones/chemistry
12.
Biochim Biophys Acta ; 1853(6): 1294-315, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25448035

ABSTRACT

A novel family of 2Fe-2S proteins, the NEET family, was discovered during the last decade in numerous organisms, including archea, bacteria, algae, plant and human; suggesting an evolutionary-conserved function, potentially mediated by their CDGSH Iron-Sulfur Domain. In human, three NEET members encoded by the CISD1-3 genes were identified. The structures of CISD1 (mitoNEET, mNT), CISD2 (NAF-1), and the plant At-NEET uncovered a homodimer with a unique "NEET fold", as well as two distinct domains: a beta-cap and a 2Fe-2S cluster-binding domain. The 2Fe-2S clusters of NEET proteins were found to be coordinated by a novel 3Cys:1His structure that is relatively labile compared to other 2Fe-2S proteins and is the reason of the NEETs' clusters could be transferred to apo-acceptor protein(s) or mitochondria. Positioned at the protein surface, the NEET's 2Fe-2S's coordinating His is exposed to protonation upon changes in its environment, potentially suggesting a sensing function for this residue. Studies in different model systems demonstrated a role for NAF-1 and mNT in the regulation of cellular iron, calcium and ROS homeostasis, and uncovered a key role for NEET proteins in critical processes, such as cancer cell proliferation and tumor growth, lipid and glucose homeostasis in obesity and diabetes, control of autophagy, longevity in mice, and senescence in plants. Abnormal regulation of NEET proteins was consequently found to result in multiple health conditions, and aberrant splicing of NAF-1 was found to be a causative of the neurological genetic disorder Wolfram Syndrome 2. Here we review the discovery of NEET proteins, their structural, biochemical and biophysical characterization, and their most recent structure-function analyses. We additionally highlight future avenues of research focused on NEET proteins and propose an essential role for NEETs in health and disease. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Subject(s)
Homeostasis , Iron/metabolism , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Amino Acid Sequence , Genetic Predisposition to Disease/genetics , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1572-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24914968

ABSTRACT

NAF-1 is an important [2Fe-2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe-2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Šresolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe-2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Šresolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe-2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe-2S] cluster of NAF-1 in vivo.


Subject(s)
Iron-Sulfur Proteins/genetics , Point Mutation , Crystallography, X-Ray , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Ligands , Native Polyacrylamide Gel Electrophoresis , Spectrophotometry, Ultraviolet
14.
Proc Natl Acad Sci U S A ; 111(14): 5177-82, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706857

ABSTRACT

Life requires orchestrated control of cell proliferation, cell maintenance, and cell death. Involved in these decisions are protein complexes that assimilate a variety of inputs that report on the status of the cell and lead to an output response. Among the proteins involved in this response are nutrient-deprivation autophagy factor-1 (NAF-1)- and Bcl-2. NAF-1 is a homodimeric member of the novel Fe-S protein NEET family, which binds two 2Fe-2S clusters. NAF-1 is an important partner for Bcl-2 at the endoplasmic reticulum to functionally antagonize Beclin 1-dependent autophagy [Chang NC, Nguyen M, Germain M, Shore GC (2010) EMBO J 29(3):606-618]. We used an integrated approach involving peptide array, deuterium exchange mass spectrometry (DXMS), and functional studies aided by the power of sufficient constraints from direct coupling analysis (DCA) to determine the dominant docked conformation of the NAF-1-Bcl-2 complex. NAF-1 binds to both the pro- and antiapoptotic regions (BH3 and BH4) of Bcl-2, as demonstrated by a nested protein fragment analysis in a peptide array and DXMS analysis. A combination of the solution studies together with a new application of DCA to the eukaryotic proteins NAF-1 and Bcl-2 provided sufficient constraints at amino acid resolution to predict the interaction surfaces and orientation of the protein-protein interactions involved in the docked structure. The specific integrated approach described in this paper provides the first structural information, to our knowledge, for future targeting of the NAF-1-Bcl-2 complex in the regulation of apoptosis/autophagy in cancer biology.


Subject(s)
Neoplasms/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Ribonucleoproteins/metabolism , Amino Acid Sequence , Humans , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Oligopeptides/chemistry , Protein Binding
15.
PLoS One ; 8(5): e61202, 2013.
Article in English | MEDLINE | ID: mdl-23717386

ABSTRACT

Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1's ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.


Subject(s)
Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Ribonucleoproteins/metabolism , Cells, Cultured , Drug Delivery Systems/methods , Humans , Iron/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction/drug effects , Protein Subunits/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Thiazolidinediones/metabolism , Thiazolidinediones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...