Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Med Chem Res ; : 1-7, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37362320

ABSTRACT

Adaptor protein 2-associated kinase 1 (AAK1) is a member of the Ark1/Prk1 family of serine/threonine kinases and plays a role in modulating receptor endocytosis. AAK1 was identified as a potential therapeutic target for the treatment of neuropathic pain when it was shown that AAK1 knock out (KO) mice had a normal response to the acute pain phase of the mouse formalin model, but a reduced response to the persistent pain phase. Herein we report our early work investigating a series of pyrrolo[2,1-f][1,2,4]triazines as part of our efforts to recapitulate this KO phenotype with a potent, small molecule inhibitor of AAK1. The synthesis, structure-activity relationships (SAR), and in vivo evaluation of these AAK1 inhibitors is described.

2.
J Med Chem ; 65(6): 4534-4564, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35261239

ABSTRACT

Recent mouse knockout studies identified adapter protein-2-associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. BMS-986176/LX-9211 (4), as a highly selective, CNS-penetrable, and potent AAK1 inhibitor, has advanced into phase II human trials. On exploring the structure-activity relationship (SAR) around this biaryl alkyl ether chemotype, several additional compounds were found to be highly selective and potent AAK1 inhibitors with good druglike properties. Among these, compounds 43 and 58 showed very good efficacy in two neuropathic pain rat models and had excellent CNS penetration and spinal cord target engagement. Both compounds also exhibited favorable physicochemical and oral pharmacokinetic (PK) properties. Compound 58, a central pyridine isomer of BMS-986176/LX-9211 (4), was 4-fold more potent than 4 in vitro and showed lower plasma exposure needed to achieve similar efficacy compared to 4 in the CCI rat model. However, both 43 and 58 showed an inferior preclinical toxicity profile compared to 4.


Subject(s)
Anesthetics, General , Neuralgia , Animals , Ethers/therapeutic use , Mice , Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Rats , Spinal Cord , Structure-Activity Relationship
3.
J Med Chem ; 65(6): 4457-4480, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35257579

ABSTRACT

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).


Subject(s)
Amines , Neuralgia , Animals , Brain , Mice , Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Rats , Spinal Cord
4.
J Med Chem ; 65(5): 4121-4155, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35171586

ABSTRACT

Adaptor protein 2-associated kinase 1 (AAK1) is a serine/threonine kinase that was identified as a therapeutic target for the potential treatment of neuropathic pain. Inhibition of AAK1 in the central nervous system, particularly within the spinal cord, was found to be the relevant site for achieving an antinociceptive effect. We previously reported that compound 7 is a brain-penetrant, AAK1 inhibitor that showed efficacy in animal models for neuropathic pain. One approach we took to improve upon the potency of 7 involved tying the amide back into the neighboring phenyl ring to form a bicyclic heterocycle. Investigation of the structure-activity relationships (SARs) of substituents on the resultant quinazoline and quinoline ring systems led to the identification of (S)-31, a brain-penetrant, AAK1-selective inhibitor with improved enzyme and cellular potency compared to 7. The synthesis, SAR, and in vivo evaluation of a series of quinazoline and quinoline-based AAK1 inhibitors are described herein.


Subject(s)
Neuralgia , Quinolines , Amides/pharmacology , Amides/therapeutic use , Animals , Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Structure-Activity Relationship
5.
J Med Chem ; 64(15): 11090-11128, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34270254

ABSTRACT

Effective treatment of chronic pain, in particular neuropathic pain, without the side effects that often accompany currently available treatment options is an area of significant unmet medical need. A phenotypic screen of mouse gene knockouts led to the discovery that adaptor protein 2-associated kinase 1 (AAK1) is a potential therapeutic target for neuropathic pain. The synthesis and optimization of structure-activity relationships of a series of aryl amide-based AAK1 inhibitors led to the identification of 59, a brain penetrant, AAK1-selective inhibitor that proved to be a valuable tool compound. Compound 59 was evaluated in mice for the inhibition of µ2 phosphorylation. Studies conducted with 59 in pain models demonstrated that this compound was efficacious in the phase II formalin model for persistent pain and the chronic-constriction-injury-induced model for neuropathic pain in rats. These results suggest that AAK1 inhibition is a promising approach for the treatment of neuropathic pain.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Brain/enzymology , Neuralgia/drug therapy , Protein Kinases/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Caco-2 Cells , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Neuralgia/metabolism , Protein Kinases/chemical synthesis , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
6.
Drug Discov Today ; 26(5): 1115-1125, 2021 05.
Article in English | MEDLINE | ID: mdl-33497831

ABSTRACT

Kinases, accounting for 20% of the human genome, have been the focus of pharmaceutical drug discovery efforts for over three decades. Despite concerns surrounding the tractability of kinases as drug targets, it is evident that kinase drug discovery offers great potential, underscored by the US Food and Drug Administration (FDA) approval of 48 small-molecule kinase inhibitors. Despite these successes, it is challenging to identify novel kinome selective inhibitors with good pharmacokinetic/pharmacodynamic (PK/PD) properties, and resistance to kinase inhibitor treatment frequently arises. A new era of kinase drug discovery predicates the need for diverse and powerful tools to discover the next generation of kinase inhibitors. Here, we outline key tenets of the Bristol Meyers Squibb (BMS) kinase platform, to enable efficient generation of highly optimized kinase inhibitors.


Subject(s)
Drug Discovery/methods , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Animals , Drug Approval , Drug Resistance , Humans , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinases/metabolism , United States , United States Food and Drug Administration
7.
SLAS Discov ; 26(2): 242-247, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32400264

ABSTRACT

Hits from high-throughput screening (HTS) assays are typically evaluated using cheminformatics and/or empirical approaches before a decision for follow-up (activity confirmation and/or sample resynthesis) is made. However, the compound integrity (i.e., identity and purity) of these hits often remains largely unknown at this stage, since many compounds in the screening collection could undergo various changes such as degradation, polymerization, and precipitation during storage over time. When compound integrity is actually assessed for HTS hits postassay to address this issue, the process often increases the overall cycle time by weeks due to the reacquisition of the samples and the lengthy liquid chromatography-ultraviolet/mass spectrometric analysis time. Here we present a novel approach where compound integrity data are collected concurrently with the concentration-response curve (CRC) stage of HTS, with both assays occurring either in parallel on two distributions from the same liquid sample or serially using the original source liquid sample. The rapid generation of compound integrity data has been enabled by a high-speed ultra-high-pressure liquid chromatography-ultraviolet/mass spectrometric platform capable of analyzing ~2000 samples per instrument per week. From this parallel approach, both compound integrity and CRC potency results for screening hits become available to medicinal chemists at the same time, which has greatly enhanced the decision-making process for hit follow-up and progression. In addition, the compound integrity results from recent hits provide a real-time and representative "snapshot" of the sample integrity of the entire compound collection, and the data can be used for in-depth analyses of the screening collection.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Chromatography, Liquid , Mass Spectrometry , Small Molecule Libraries
8.
SLAS Discov ; 26(3): 410-419, 2021 03.
Article in English | MEDLINE | ID: mdl-32935608

ABSTRACT

We previously developed a panel of one-step real-time quantitative reverse transcription PCR (one-step qRT-PCR; hereafter referred to as qRT-PCR) assays to assess compound efficacy. However, these high-cost, conventional qRT-PCR manual assays are not amenable to high-throughput screen (HTS) analysis in a time-sensitive and complex drug discovery process. Here, we report the establishment of an automated gene expression platform using in-house lysis conditions that allows the study of various cell lines, including primary T cells. This process innovation provides the opportunity to perform genotypic profiling in both immunology and oncology therapeutic areas with quantitative studies as part of routine drug discovery program support. This newly instituted platform also enables a panel screening strategy to efficiently connect HTS, lead identification, and lead optimization in parallel.


Subject(s)
Automation, Laboratory/standards , Gene Expression Profiling/standards , High-Throughput Screening Assays/methods , Real-Time Polymerase Chain Reaction/methods , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Automation, Laboratory/instrumentation , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Baculoviral IAP Repeat-Containing 3 Protein/immunology , Cell Line, Tumor , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Drug Discovery/methods , Gene Expression Profiling/instrumentation , Gene Expression Profiling/methods , Gene Expression Regulation , HCT116 Cells , High-Throughput Screening Assays/instrumentation , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Osteoblasts/cytology , Osteoblasts/metabolism , Primary Cell Culture , Real-Time Polymerase Chain Reaction/standards , Ribosomal Proteins/genetics , Ribosomal Proteins/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
9.
ACS Med Chem Lett ; 11(2): 172-178, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32071685

ABSTRACT

Novel imidazole-based TGFßR1 inhibitors were identified and optimized for potency, selectivity, and pharmacokinetic and physicochemical characteristics. Herein, we report the discovery, optimization, and evaluation of a potent, selective, and orally bioavailable TGFßR1 inhibitor, 10 (BMS-986260). This compound demonstrated functional activity in multiple TGFß-dependent cellular assays, excellent kinome selectivity, favorable pharmacokinetic properties, and curative in vivo efficacy in combination with anti-PD-1 antibody in murine colorectal cancer (CRC) models. Since daily dosing of TGFßR1 inhibitors is known to cause class-based cardiovascular (CV) toxicities in preclinical species, a dosing holiday schedule in the anti-PD-1 combination efficacy studies was explored. An intermittent dosing regimen of 3 days on and 4 days off allowed mitigation of CV toxicities in one month dog and rat toxicology studies and also provided similar efficacy as once daily dosing.

10.
ACS Med Chem Lett ; 10(3): 306-311, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891131

ABSTRACT

The four members of the Janus family of nonreceptor tyrosine kinases play a significant role in immune function. The JAK family kinase inhibitor, tofacitinib 1, has been approved in the United States for use in rheumatoid arthritis (RA) patients. A number of JAK inhibitors with a variety of JAK family selectivity profiles are currently in clinical trials. Our goal was to identify inhibitors that were functionally selective for JAK1 and JAK3. Compound 22 was prepared with the desired functional selectivity profile, but it suffered from poor absorption related to physical properties. Use of the phosphate prodrug 32 enabled progression to a murine collagen induced arthritis (CIA) model. The demonstration of a robust efficacy in the CIA model suggests that use of phosphate prodrugs may resolve issues with progressing this chemotype for the treatment of autoimmune diseases such as RA.

11.
ACS Med Chem Lett ; 9(11): 1117-1122, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30429955

ABSTRACT

The multifunctional cytokine TGFß plays a central role in regulating antitumor immunity. It has been postulated that inhibition of TGFß signaling in concert with checkpoint blockade will provide improved and durable immune response against tumors. Herein, we describe a novel series of 4-azaindole TGFß receptor kinase inhibitors with excellent selectivity for TGFß receptor 1 kinase. The combination of compound 3f and an antimouse-PD-1 antibody demonstrated significantly improved antitumor efficacy compared to either treatment alone in a murine tumor model.

12.
Bioorg Med Chem Lett ; 28(18): 3080-3084, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30097367

ABSTRACT

Incorporation of a suitably-placed electrophilic group transformed a series of reversible BTK inhibitors based on carbazole-1-carboxamide and tetrahydrocarbazole-1-carboxamide into potent, irreversible inhibitors. Removal of one ring from the core of these compounds provided a potent irreversible series of 2,3-dimethylindole-7-carboxamides having excellent potency and improved selectivity, with the additional advantages of reduced lipophilicity and molecular weight.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Carbazoles/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Carbazoles/chemical synthesis , Carbazoles/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
13.
SLAS Discov ; 23(7): 742-750, 2018 08.
Article in English | MEDLINE | ID: mdl-29873570

ABSTRACT

Enhancing antitumor activities of the human immune system is a clinically proven approach with the advent of monoclonal antibodies recognizing programmed cell death protein-1 (PD1) receptors on immune cell surfaces. Historically, using flow cytometry as a means to assess next-generation agent activities was underused, largely due to limits on cell number and assay sensitivity. Here, we leveraged an IntelliCyt high-throughput flow cytometry platform to monitor human dendritic cell maturation and lymphocyte proliferation in mixed lymphocyte reactions. Specifically, we established flow cytometry-based immunophenotyping and screening methodologies capable of measuring T-cell activation as a result of cell-associated antigens presented on dendritic cell surfaces, as indicated by cell proliferation, cytokine secretion, and surface marker expression. Together, the overall novelty of this 384-well platform is its capability to measure multiple functional readouts in one well and consistently evaluate large numbers of compounds in a single study, as well as its ability to show increased assay sensitivity requiring considerably fewer primary cells and less reagents compared to more traditional 96-well flow cytometry methods.


Subject(s)
Dendritic Cells/metabolism , Flow Cytometry , High-Throughput Screening Assays , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , T-Lymphocytes/metabolism , Cytokines/metabolism , Dendritic Cells/immunology , Flow Cytometry/methods , Humans , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
14.
Bioorg Med Chem ; 26(5): 1026-1034, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29422332

ABSTRACT

The TGFß-TGFßR signaling pathway has been reported to play a protective role in the later stages of tumorigenesis via increasing immunosuppressive Treg cells and facilitating the epithelial to mesenchymal transition (EMT). Therefore, inhibition of TGFßR has the potential to enhance antitumor immunity. Herein we disclose the identification and optimization of novel heterobicyclic inhibitors of TGFßRI that demonstrate potent inhibition of SMAD phosphorylation. Application of structure-based drug design to the novel pyrrolotriazine chemotype resulted in improved binding affinity (Ki apparent = 0.14 nM), long residence time (T1/2 > 120 min) and significantly improved potency in the PSMAD cellular assay (IC50 = 24 nM). Several analogs inhibited phosphorylation of SMAD both in vitro and in vivo. Additionally, inhibition of TGFß-stimulated phospho-SMAD was observed in primary human T cells.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Binding Sites , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/pharmacology , Cells, Cultured , Crystallography, X-Ray , Drug Design , Epithelial-Mesenchymal Transition/drug effects , Humans , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thiazines/chemical synthesis , Thiazines/chemistry , Thiazines/metabolism
15.
SLAS Discov ; 23(2): 122-131, 2018 02.
Article in English | MEDLINE | ID: mdl-28957636

ABSTRACT

Chemotaxis is the directional movement of cells in response to a chemical stimulus and is vital for many physiological processes, including immune responses, tumor metastasis, wound healing, and blood vessel formation. Therefore, modulation of chemotaxis is likely to be of therapeutic benefit. Hence, a high-throughput means to conduct chemotaxis assays is advantageous for lead evaluation and optimization in drug discovery. In this study, we have validated a novel approach for a higher-throughput, label-free, image-based IncuCyte chemotaxis assay encompassing various cell types, including T cells, B cells, mouse Th17, immature and mature dendritic cells, monocyte THP-1, CCRF-CEM, monocytes, neutrophils, macrophages, and MDA-MB-231. These assays enable us to visualize chemotactic cell migration in real time and perform kinetic cell motility studies on an automated platform, thereby allowing us to incorporate the quantitative studies of cell migration behavior into a routine drug discovery screening cascade.


Subject(s)
Chemotaxis/drug effects , Drug Discovery/methods , High-Throughput Screening Assays/methods , Pharmaceutical Preparations/administration & dosage , Animals , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Dendritic Cells/drug effects , Drug Evaluation, Preclinical/methods , Macrophages/drug effects , Mice , Monocytes/drug effects , Neutrophils/drug effects
16.
J Med Chem ; 60(12): 5193-5208, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28541707

ABSTRACT

PI3Kδ plays an important role controlling immune cell function and has therefore been identified as a potential target for the treatment of immunological disorders. This article highlights our work toward the identification of a potent, selective, and efficacious PI3Kδ inhibitor. Through careful SAR, the successful replacement of a polar pyrazole group by a simple chloro or trifluoromethyl group led to improved Caco-2 permeability, reduced Caco-2 efflux, reduced hERG PC activity, and increased selectivity profile while maintaining potency in the CD69 hWB assay. The optimization of the aryl substitution then identified a 4'-CN group that improved the human/rodent correlation in microsomal metabolic stability. Our lead molecule is very potent in PK/PD assays and highly efficacious in a mouse collagen-induced arthritis model.


Subject(s)
Arthritis, Experimental/drug therapy , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Structure-Activity Relationship , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Caco-2 Cells/drug effects , Caco-2 Cells/immunology , Dogs , ERG1 Potassium Channel/metabolism , Enzyme Inhibitors/chemistry , Female , Humans , Immune System Diseases/drug therapy , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Lectins, C-Type/metabolism , Male , Mice, Inbred BALB C , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacology , Rabbits
17.
Bioorg Med Chem Lett ; 27(14): 3101-3106, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28539220

ABSTRACT

A series of potent dual JAK1/3 inhibitors have been developed from a moderately selective JAK3 inhibitor. Substitution at the C6 position of the pyrrolopyridazine core with aryl groups provided exceptional biochemical potency against JAK1 and JAK3 while maintaining good selectivity against JAK2 and Tyk2. Translation to in vivo efficacy was observed in a murine model of chronic inflammation. X-ray co-crystal structure determination confirmed the presumed inhibitor binding orientation in JAK3. Efforts to reduce hERG channel inhibition will be described.


Subject(s)
Janus Kinase 1/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyrroles/chemistry , Animals , Binding Sites , Catalytic Domain , Cell Line , Crystallography, X-Ray , Disease Models, Animal , Drug Evaluation, Preclinical , Half-Life , Humans , Inflammation/prevention & control , Inhibitory Concentration 50 , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/metabolism , Mice , Mice, Inbred BALB C , Molecular Conformation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/metabolism
18.
J Pharmacol Exp Ther ; 358(3): 371-86, 2016 09.
Article in English | MEDLINE | ID: mdl-27411717

ABSTRACT

To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor-induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.


Subject(s)
Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Electrophysiological Phenomena/drug effects , Gene Knockout Techniques , HEK293 Cells , Humans , Male , Mice , Neuralgia/metabolism , Neuralgia/physiopathology , Nociception/drug effects , Phenotype , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Rats , Spinal Cord/drug effects , Spinal Cord/enzymology , Spinal Cord/physiopathology
19.
J Biomol Screen ; 21(8): 866-74, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27142718

ABSTRACT

Oral agents targeting Janus-associated kinases (JAKs) are promising new agents in clinical development. To better understand the relationship between JAK inhibition and biological outcome, compounds targeting JAKs were evaluated in peripheral human whole blood. To date, these analyses are low throughput and costly. Here, we developed a robust 384-well, high-throughput flow-based assay approach to screen small molecules for JAK/STAT signaling inhibition in human whole blood. This assay platform provides a highly sensitive analysis of signaling events in blood and facilitates measurement of target engagement. Further, the automation technologies and process optimizations developed here overcame sample integrity, handling, and multiparametric data analysis bottlenecks without affecting assay performance. Together these efforts dramatically increased sample throughput compared to conventional manual flow cytometric approaches and enabled development of novel JAK/STAT inhibitors.


Subject(s)
Flow Cytometry/methods , High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/isolation & purification , Signal Transduction/drug effects , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Phosphorylation , Protein Kinase Inhibitors/chemistry , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/genetics , Small Molecule Libraries/chemistry
20.
J Med Chem ; 59(3): 1041-51, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26751161

ABSTRACT

GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics.


Subject(s)
Brain/metabolism , Drug Discovery , Glycogen Synthase Kinase 3/antagonists & inhibitors , Niacinamide/pharmacology , Niacinamide/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Brain/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Molecular , Molecular Structure , Niacinamide/administration & dosage , Niacinamide/chemistry , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...