Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 170: 112642, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34175699

ABSTRACT

Contamination by hazardous substances is one of the main environmental problems in the eastern Gulf of Finland, Baltic Sea. A trilateral effort to sample and analyse heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs), and organotins from bottom sediments in 2019-2020 were conducted along with harvesting historical data in Russian, Estonian and Finnish waters. We suggest that the input of organotins still occurs along the ship traffic routes. The tributyltin content exceeded the established quality criteria up to more than 300 times. High contamination by PAHs found near the ports, most likely originate from incomplete fuel incineration processes. The Neva River Estuary and Luga Bay might potentially suffer from severe cadmium contamination. The high ecological risk attributed to the HMs was detected at deep offshore areas. The simulated accumulation pattern qualitatively agrees with field observations of HMs in sediments, demonstrating the potential of numerical tools to tackle the hazardous substances problems.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring , Finland , Geologic Sediments , Hazardous Substances , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 192(12): 795, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33244647

ABSTRACT

Benthic habitats and communities are key components of the marine ecosystem. Securing their functioning is a central aim in marine environmental management, where monitoring data provide the base for assessing the state of marine ecosystems. In the Baltic Sea, a > 50-year-long tradition of zoobenthic monitoring exists. However, the monitoring programmes were designed prior to the current policies, primarily to detect long-term trends at basin-scale and are thus not optimal to fulfil recent requirements such as area-based periodic status assessments. Here, we review the current monitoring programmes and assess the precision and representativity of the monitoring data in status assessments to identify routes for improvement. At present, the monitoring is focused on soft-bottoms, not accounting for all habitat types occurring in the Baltic Sea. Evaluating the sources of variance in the assessment data revealed that the component accounting for variability among stations forms the largest proportion of the uncertainty. Furthermore, it is shown that the precision of the status estimates can be improved, with the current number of samples. Reducing sampling effort per station, but sampling more stations, is the best option to improve precision in status assessments. Furthermore, by allocating the sampling stations more evenly in the sub-basins, a better representativity of the area can be achieved. However, emphasis on securing the long-term data series is needed if changes to the monitoring programmes are planned.


Subject(s)
Ecosystem , Environmental Monitoring , Baltic States , Time
3.
Genomics ; 112(5): 3268-3273, 2020 09.
Article in English | MEDLINE | ID: mdl-32553480

ABSTRACT

A new Alcanivorax sp. VBW004 was isolated from a shallow hydrothermal vent in Azores Island, Portugal. In this study, we determined VBW004 was resistant to copper. This strain showed maximum tolerance of copper concentrations up to 600 µg/mL. Based on 16S rRNA gene sequencing and phylogeny revealed that this strain was more closely related to Alcanivorax borkumensis SK2. We sequenced the genome of this strain that consist of 3.8 Mb size with a G + C content of 58.4 %. In addition, digital DNA-DNA hybridizations (dDDH) and the average nucleotide identities (ANI) analysis between Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9 revealed that Alcanivorax sp. VBW004 belongs to new species. Functional annotation revealed that the genome acquired multiple copper resistance encoding genes that could assist VBW004 to respond to high Cu toxicity. Our results from biosorption analysis presumed that the VBW004 is an ecologically important bacterium that could be useful for copper bioremediation.


Subject(s)
Alcanivoraceae/metabolism , Copper/metabolism , Hydrothermal Vents/microbiology , Alcanivoraceae/classification , Alcanivoraceae/genetics , Alcanivoraceae/isolation & purification , Azores , Genome, Bacterial , Genomics , Molecular Sequence Annotation , Phylogeny
4.
J Plankton Res ; 41(6): 925-938, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31920210

ABSTRACT

Abiotic variables subject to global change are known to affect plankton biomasses, and these effects can be species-specific. Here, we investigate the environmental drivers of annual biomass using plankton data from the Gulf of Finland in the northern Baltic Sea, spanning years 1993-2016. We estimated annual biomass time-series of 31 nanoplankton and microplankton species and genera from day-level data, accounting for the average phenology and wind. We found wind effects on day-level biomass in 16 taxa. We subsequently used state-space models to connect the annual biomass changes with potential environmental drivers (temperature, salinity, stratification, ice cover and inorganic nutrients), simultaneously accounting for temporal trends. We found clear environmental effects influencing the annual biomasses of Dinobryon faculiferum, Eutreptiella spp., Protoperidinium bipes, Pseudopedinella spp., Snowella spp. and Thalassiosira baltica and indicative effects in 10 additional taxa. These effects mostly concerned temperature, salinity or stratification. Together, these 16 taxa represent two-thirds of the summer biomass in the sampled community. The inter-annual variability observed in salinity and temperature is relatively low compared to scenarios of predicted change in these variables. Therefore, the potential impacts of the presented effects on plankton biomasses are considerable.

5.
Front Microbiol ; 7: 785, 2016.
Article in English | MEDLINE | ID: mdl-27303378

ABSTRACT

Some phagotrophic organisms can retain chloroplasts of their photosynthetic prey as so-called kleptochloroplasts and maintain their function for shorter or longer periods of time. Here we show for the first time that the dinoflagellate Dinophysis acuta takes control over "third-hand" chloroplasts obtained from its ciliate prey Mesodinium spp. that originally ingested the cryptophyte chloroplasts. With its kleptochloroplasts, D. acuta can synthesize photosynthetic as well as photoprotective pigments under long-term starvation in the light. Variable chlorophyll fluorescence measurements showed that the kleptochloroplasts were fully functional during 1 month of prey starvation, while the chlorophyll a-specific inorganic carbon uptake decreased within days of prey starvation under an irradiance of 100 µmol photons m(-2) s(-1). While D. acuta cells can regulate their pigmentation and function of kleptochloroplasts they apparently lose the ability to maintain high inorganic carbon fixation rates.

6.
Environ Microbiol ; 18(12): 4403-4411, 2016 12.
Article in English | MEDLINE | ID: mdl-27207672

ABSTRACT

It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure.


Subject(s)
Diatoms/genetics , Plankton/genetics , Acclimatization , Biomass , Diatoms/classification , Diatoms/growth & development , Diatoms/physiology , Gene Flow , Genotype , Microsatellite Repeats , Plankton/classification , Plankton/growth & development , Plankton/physiology
7.
Front Microbiol ; 7: 517, 2016.
Article in English | MEDLINE | ID: mdl-27148206

ABSTRACT

In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner.

8.
PLoS One ; 11(5): e0156147, 2016.
Article in English | MEDLINE | ID: mdl-27213812

ABSTRACT

Over the past century the spread of hypoxia in the Baltic Sea has been drastic, reaching its 'arm' into the easternmost sub-basin, the Gulf of Finland. The hydrographic and climatological properties of the gulf offer a broad suite of discrete niches for microbial communities. The current study explores spatiotemporal dynamics of bacterioplankton community in the Gulf of Finland using massively parallel sequencing of 16S rRNA fragments obtained by amplifying community DNA from spring to autumn period. The presence of redoxcline and drastic seasonal changes make spatiotemporal dynamics of bacterioplankton community composition (BCC) and abundances in such estuary remarkably complex. To the best of our knowledge, this is the first study that analyses spatiotemporal dynamics of BCC in relation to phytoplankton bloom throughout the water column (and redoxcline), not only at the surface layer. We conclude that capability to survive (or benefit from) shifts between oxic and hypoxic conditions is vital adaptation for bacteria to thrive in such environments. Our results contribute to the understanding of emerging patterns in BCCs that occupy hydrographically similar estuaries dispersed all over the world, and we suggest the presence of a global redox- and salinity-driven metacommunity. These results have important implications for understanding long-term ecological and biogeochemical impacts of hypoxia expansion in the Baltic Sea (and similar ecosystems), as well as global biogeography of bacteria specialized inhabiting similar ecosystems.


Subject(s)
Aquatic Organisms/metabolism , Bacteria , Biota , Hypoxia , Plankton , Seawater/microbiology , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Baltic States , Biota/genetics , Ecosystem , Estuaries , Finland , Hydrostatic Pressure , Hypoxia/microbiology , Oxidation-Reduction , Phytoplankton , Plankton/genetics , Plankton/growth & development , Plankton/metabolism , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Seawater/chemistry
9.
PLoS One ; 10(4): e0122304, 2015.
Article in English | MEDLINE | ID: mdl-25860812

ABSTRACT

This study explored the spatiotemporal dynamics of the bacterioplankton community composition in the Gulf of Finland (easternmost sub-basin of the Baltic Sea) based on phylogenetic analysis of 16S rDNA sequences acquired from community samples via pyrosequencing. Investigations of bacterioplankton in hydrographically complex systems provide good insight into the strategies by which microbes deal with spatiotemporal hydrographic gradients, as demonstrated by our research. Many ribotypes were closely affiliated with sequences isolated from environments with similar steep physiochemical gradients and/or seasonal changes, including seasonally anoxic estuaries. Hence, one of the main conclusions of this study is that marine ecosystems where oxygen and salinity gradients co-occur can be considered a habitat for a cosmopolitan metacommunity consisting of specialized groups occupying niches universal to such environments throughout the world. These niches revolve around functional capabilities to utilize different electron receptors and donors (including trace metal and single carbon compounds). On the other hand, temporal shifts in the bacterioplankton community composition at the surface layer were mainly connected to the seasonal succession of phytoplankton and the inflow of freshwater species. We also conclude that many relatively abundant populations are indigenous and well-established in the area.


Subject(s)
Bacteria/genetics , Plankton/genetics , Bacteria/classification , Ecosystem , Estuaries , Oxidation-Reduction , Phylogeny , Plankton/classification , RNA, Ribosomal, 16S/analysis , Seawater/microbiology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL