Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220130, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37305909

ABSTRACT

Naive multi-host communities include species that may differentially maintain, transmit and amplify novel pathogens; therefore, we expect species to fill distinct roles during infectious disease emergence. Characterizing these roles in wildlife communities is challenging because most disease emergence events are unpredictable. Here, we used field-collected data to investigate how species-specific attributes influenced the degree of exposure, probability of infection, and pathogen intensity, during the emergence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in a highly diverse tropical amphibian community. Our findings confirmed that ecological traits commonly evaluated as correlates of decline were positively associated with infection prevalence and intensity at the species level during the outbreak. We identified key hosts that disproportionally contributed to transmission dynamics in this community and found a signature of phylogenetic history in disease responses associated with increased pathogen exposure via shared life-history traits. Our findings establish a framework that could be applied in conservation efforts to identify key species driving disease dynamics under enzootics before reintroducing amphibians back into their original communities. Reintroductions of supersensitive hosts that are unable to overcome infections will limit the success of conservation programmes by amplifying the disease at the community level. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Subject(s)
Biological Evolution , Life History Traits , Animals , Phylogeny , Disease Outbreaks/veterinary , Amphibians
2.
J Exp Zool A Ecol Integr Physiol ; 333(10): 829-840, 2020 12.
Article in English | MEDLINE | ID: mdl-33174393

ABSTRACT

Understanding the responses of naïve communities to the invasion of multihost pathogens requires accurate estimates of susceptibility across taxa. In the Americas, the likely emergence of a second amphibian pathogenic fungus (Batrachochytrium salamandrivorans, Bsal) calls for new ways of prioritizing disease mitigation among species due to the high diversity of naïve hosts with prior B. dendrobatidis (Bd) infections. Here, we applied the concept of pathogenic potential to quantify the virulence of chytrid fungi on naïve amphibians and evaluate species for conservation efforts in the event of an outbreak. The benefit of this measure is that it combines and summarizes the variation in disease effects into a single numerical index, allowing for comparisons across species, populations or groups of individuals that may inherently exhibit differences in susceptibility. As a proof of concept, we obtained standardized responses of disease severity by performing experimental infections with Bsal on five plethodontid salamanders from southeastern United States. Four out of five species carried natural infections of Bd at the start of the experiments. We showed that Bsal exhibited its highest value of pathogenic potential in a species that is already declining (Desmognathus auriculatus). We find that this index provides additional information beyond the standard measures of disease prevalence, intensity, and mortality, because it leveraged these disease parameters within each categorical group. Scientists and practitioners could use this measure to justify research, funding, trade, or conservation measures.


Subject(s)
Batrachochytrium , Mycoses/veterinary , Urodela/microbiology , Animals , Batrachochytrium/pathogenicity , Florida , Introduced Species , Mycoses/epidemiology , Mycoses/microbiology , Risk Assessment
3.
Mol Ecol ; 29(17): 3173-3186, 2020 09.
Article in English | MEDLINE | ID: mdl-32310322

ABSTRACT

As globalization lowers geographic barriers to movement, coinfection with novel and enzootic pathogens is increasingly likely. Novel and enzootic pathogens can interact synergistically or antagonistically, leading to increased or decreased disease severity. Here we examine host immune responses to coinfection with two closely related fungal pathogens: Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Both pathogens have had detrimental effects on amphibian populations, with Bd now largely enzootic, while Bsal is currently spreading and causing epizootics. Recent experimental work revealed that newts coinfected with Bd and Bsal had significantly higher mortality than those infected with either pathogen alone. Here we characterize host immunogenomic responses to chytrid coinfection relative to single infection. Across several classes of immune genes including pattern recognition receptors, cytokines, and MHC, coinfected host gene expression was weakly upregulated or comparable to that seen in single Bd infection, but significantly decreased when compared to Bsal infection. Combined with strong complement pathway downregulation and keratin upregulation, these results indicate that coinfection with Bd and Bsal compromises immune responses active against Bsal alone. As Bsal continues to invade naïve habitats where Bd is enzootic, coinfection will be increasingly common. If other Bd-susceptible species in the region have similar responses, interactions between the two pathogens could cause severe population and community-level declines.


Subject(s)
Chytridiomycota , Coinfection , Mycoses , Amphibians , Animals , Chytridiomycota/genetics , Mycoses/veterinary , Urodela
4.
Science ; 367(6484)2020 03 20.
Article in English | MEDLINE | ID: mdl-32193294

ABSTRACT

Lambert et al question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species.


Subject(s)
Chytridiomycota , Mycoses , Amphibians , Animals , Biodiversity , Retrospective Studies
5.
Science ; 367(6479): 814-816, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32054766

ABSTRACT

Biodiversity is declining at unprecedented rates worldwide. Yet cascading effects of biodiversity loss on other taxa are largely unknown because baseline data are often unavailable. We document the collapse of a Neotropical snake community after the invasive fungal pathogen Batrachochytrium dendrobatidis caused a chytridiomycosis epizootic leading to the catastrophic loss of amphibians, a food source for snakes. After mass mortality of amphibians, the snake community contained fewer species and was more homogeneous across the study site, with several species in poorer body condition, despite no other systematic changes in the environment. The demise of the snake community after amphibian loss demonstrates the repercussive and often unnoticed consequences of the biodiversity crisis and calls attention to the invisible declines of rare and data-deficient species.


Subject(s)
Amphibians/microbiology , Biodiversity , Chytridiomycota/pathogenicity , Endangered Species , Extinction, Biological , Snakes , Animals
6.
Front Vet Sci ; 6: 304, 2019.
Article in English | MEDLINE | ID: mdl-31572738

ABSTRACT

Batrachochytrium dendrobatidis and B. salamandrivorans are important amphibian pathogens responsible for morbidity and mortality in free-ranging and captive frogs, salamanders, and caecilians. While B. dendrobatidis has a widespread global distribution, B. salamandrivorans has only been detected in amphibians in Asia and Europe. Although molecular detection methods for these fungi are well-characterized, differentiation of the morphologically similar organisms in the tissues of affected amphibians is incredibly difficult. Moreover, an accurate tool to identify and differentiate Batrachochytrium in affected amphibian tissues is essential for a specific diagnosis of the causative agent in chytridiomycosis cases. To address this need, an automated dual-plex chromogenic RNAScope® in situ hybridization (ISH) assay was developed and characterized for simultaneous detection and differentiation of B. dendrobatidis and B. salamandrivorans. The assay, utilizing double Z target probe pairs designed to hybridize to 28S rRNA sequences, was specific for the identification of both organisms in culture and in formalin-fixed paraffin-embedded amphibian tissues. The assay successfully identified organisms in tissue samples from five salamander and one frog species preserved in formalin for up to 364 days and was sensitive for the detection of Batrachochytrium in animals with qPCR loads as low as 1.1 × 102 zoospores/microliter. ISH staining of B. salamandrivorans also highlighted the infection of dermal cutaneous glands, a feature not observed in amphibian B. dendrobatidis cases and which may play an important role in B. salamandrivorans pathogenesis in salamanders. The developed ISH assay will benefit both amphibian chytridiomycosis surveillance projects and pathogenesis studies by providing a reliable tool for Batrachochytrium differentiation in tissues.

7.
Zookeys ; 859: 117-130, 2019.
Article in English | MEDLINE | ID: mdl-31327925

ABSTRACT

Eastern Panamá is within the Mesoamerican biodiversity hotspot and supports an understudied amphibian fauna. Here we characterize the amphibian diversity across an elevational gradient in one of the least studied mountain ranges in eastern Panamá, Serranía de Majé. A total of 38 species were found, which represent 17% of all species reported for Panamá. Based on expected richness function and individual-based rarefaction curves, it is estimated that this is an underestimate and that at least 44 amphibian species occur in this area. Members of all three amphibian orders were encountered, represented by ten families and 22 genera, including five species endemic to Central America. Estimated species richness decreased with elevation, and the mid-elevation site supported both lowland and highland species. Our study provides a baseline for understanding the distribution pattern of amphibians in Panamá, for conservation efforts, and for determining disease-induced changes in amphibian communities.

8.
Mol Ecol ; 28(11): 2917-2931, 2019 06.
Article in English | MEDLINE | ID: mdl-31066947

ABSTRACT

Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen-microbiome-host interactions, which can lead to variation in disease outcome. The skin microbiome of red-backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti-Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti-Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti-Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd-resistant species.


Subject(s)
Microbiota , Mycoses/microbiology , Skin/microbiology , Temperature , Urodela/microbiology , Animals , Chytridiomycota/physiology , Host-Pathogen Interactions , Likelihood Functions , Survival Analysis
9.
Science ; 363(6434): 1459-1463, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30923224

ABSTRACT

Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.


Subject(s)
Anura/microbiology , Anura/physiology , Biodiversity , Chytridiomycota , Extinction, Biological , Mycoses/veterinary , Americas/epidemiology , Animals , Anura/classification , Australia/epidemiology , Mycoses/epidemiology
10.
J Evol Biol ; 32(3): 287-298, 2019 03.
Article in English | MEDLINE | ID: mdl-30650220

ABSTRACT

Phenotypes are the target of selection and affect the ability of organisms to persist in variable environments. Phenotypes can be influenced directly by genes and/or by phenotypic plasticity. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has a global distribution, unusually broad host range, and high genetic diversity. Phenotypic plasticity may be an important process that allows this pathogen to infect hundreds of species in diverse environments. We quantified phenotypic variation of nine Bd genotypes from two Bd lineages (Global Pandemic Lineage [GPL] and Brazil) and a hybrid (GPL-Brazil) grown at three temperatures (12, 18 and 24°C). We measured five functional traits including two morphological traits (zoospore and zoosporangium sizes) and three life history traits (carrying capacity, time to fastest growth and exponential growth rate) in a phylogenetic framework. Temperature caused highly plastic responses within each genotype, with all Bd genotypes showing phenotypic plasticity in at least three traits. Among genotypes, Bd generally showed the same direction of plastic response to temperature: larger zoosporangia, higher carrying capacity, longer time to fastest growth and slower exponential growth at lower temperatures. The exception was zoospore size, which was highly variable. Our findings indicate that Bd genotypes have evolved novel phenotypes through plastic responses to temperature over very short timescales. High phenotypic variability likely extends to other traits and may facilitate the large host range and rapid spread of Bd.


Subject(s)
Adaptation, Physiological , Chytridiomycota/genetics , Phenotype , Animals , Biological Evolution , Genotype , Life History Traits , Temperature
11.
Ecol Appl ; 28(8): 1948-1962, 2018 12.
Article in English | MEDLINE | ID: mdl-30368999

ABSTRACT

Emerging infectious pathogens are responsible for some of the most severe host mass mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is challenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host-pathogen coexistence or extirpation. Despite decades of research, little is known about host-pathogen coexistence post-outbreak when low host abundances and cryptic species make these interactions difficult to study. Using a novel disease-structured N-mixture model, we evaluate empirical support for three host-pathogen coexistence hypotheses (source-sink, eco-evolutionary rescue, and spatial variation in pathogen transmission) in a Neotropical amphibian community decimated by Batrachochytrium dendrobatidis (Bd) in 2004. During 2010-2014, we surveyed amphibians in Parque Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, Panama. We found that the primary driver of host-pathogen coexistence was eco-evolutionary rescue, as evidenced by similar amphibian survival and recruitment rates between infected and uninfected hosts. Average apparent monthly survival rates of uninfected and infected hosts were both close to 96%, and the expected number of uninfected and infected hosts recruited (via immigration/reproduction) was less than one host per disease state per 20-m site. The secondary driver of host-pathogen coexistence was spatial variation in pathogen transmission as we found that transmission was highest in areas of low abundance but there was no support for the source-sink hypothesis. Our results indicate that changes in the host community (i.e., through genetic or species composition) can reduce the impacts of emerging infectious disease post-outbreak. Our disease-structured N-mixture model represents a valuable advancement for conservation managers trying to understand underlying host-pathogen interactions and provides new opportunities to study disease dynamics in remnant host populations decimated by virulent pathogens.


Subject(s)
Amphibians , Biological Evolution , Chytridiomycota/physiology , Communicable Diseases, Emerging/veterinary , Host-Pathogen Interactions , Mycoses/veterinary , Animals , Mycoses/microbiology , Panama
12.
Ecohealth ; 15(4): 815-826, 2018 12.
Article in English | MEDLINE | ID: mdl-30128614

ABSTRACT

Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has led to devastating declines in amphibian populations worldwide. Current theory predicts that Bd infections are maintained through both reproduction on the host's skin and reinfection from sources outside of the host. To investigate the importance of external reinfection on pathogen burden, we infected captive-bred individuals of the highly susceptible Panamanian Golden Frog, Atelopus glyphus, and wild-caught glass frogs, Espadarana prosoblepon, with Bd. We housed the animals in one of three treatments: individually, in heterospecific pairs, and in conspecific pairs. For 8 weeks, we measured the Bd load and shedding rate of all frogs. We found that Atelopus had high rates of increase in both Bd load and shedding rate, but pathogen growth rates did not differ among treatments. The infection intensity of Espadarana co-housed with Atelopus was indistinguishable from those housed singly and those in conspecific pairs, despite being exposed to a large external source of Bd zoospores. Our results indicate that Bd load in both species is driven by pathogen replication within an individual, with reinfection from outside the host contributing little to the amplification of host fungal load.


Subject(s)
Anura/microbiology , Chytridiomycota/growth & development , Chytridiomycota/pathogenicity , Mycoses/veterinary , Animal Husbandry , Animals , Mycoses/epidemiology , Mycoses/transmission , Panama/epidemiology
13.
Genetica ; 146(2): 125-136, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29450668

ABSTRACT

Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.


Subject(s)
Anura/genetics , Histocompatibility Antigens Class I/genetics , Alleles , Animals , Gene Frequency , Genetic Variation , Phylogeny , Recombination, Genetic , Selection, Genetic
14.
PLoS Biol ; 16(2): e2003080, 2018 02.
Article in English | MEDLINE | ID: mdl-29408868
15.
J Anim Ecol ; 87(2): 341-353, 2018 03.
Article in English | MEDLINE | ID: mdl-28682480

ABSTRACT

The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments. Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease. We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700-1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members. Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd. We conclude that environment is more influential in shaping skin microbiome structure than host differences in these congeneric species, and suggest that environmental characteristics that covary with elevation influence microbiome structure. High prevalence and abundance of anti-Bd bacteria may contribute to low Bd levels in these populations of Plethodon salamanders.


Subject(s)
Environment , Host Microbial Interactions/physiology , Microbiota/physiology , Skin/microbiology , Urodela/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Host Specificity , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
16.
Front Microbiol ; 8: 1551, 2017.
Article in English | MEDLINE | ID: mdl-28871241

ABSTRACT

Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans), for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C). We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423). We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (µ = 46-53%), but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (µ = 5-71%). Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (µ = 5-100%). Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (µ = 57-100%). All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together, suggesting that bacterial inhibition strength may be predictable based on Batrachochytrium relatedness. We conclude that bacterial inhibition capabilities change among bacterial strains, Batrachochytrium genotypes and temperatures. A comprehensive understanding of bacterial inhibitory function, across pathogen genotypes and temperatures, is needed to better predict the role of bacterial symbionts in amphibian disease ecology. For targeted conservation applications, we recommend using bacterial strains identified as strongly inhibitory as they are most likely to produce broad-spectrum antimicrobial agents at a range of temperatures.

18.
Zootaxa ; 4254(1): 91-101, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28609983

ABSTRACT

We conducted a molecular assessment of Colostethus-like frogs along an elevational gradient in the Serranía de Pirre, above Santa Cruz de Cana, eastern Panama, aiming to establish their species identity and to determine the altitudinal distribution of C. latinasus. Our findings confirm the view of C. latinasus as an endemic species restricted to the highlands of this mountain range, i.e., 1350-1475 m.a.s.l., considered to be type locality of this species. We described the advertisement call of C. latinasus that consists of a series of 4-18 single, short and relatively loud "peep"-like notes given in rapid succession, and its spectral and temporal features were compared with calls of congeneric species. For the first time, DNA sequences from C. latinasus were obtained, since previously reported sequences were based on misidentified specimens. This is particularly important because C. latinasus is the type species of Colostethus, a genus considered paraphyletic according to recent phylogenetic analyses based on molecular data.


Subject(s)
Anura , Sympatry , Animals , DNA , Panama , Phylogeny
19.
Appl Environ Microbiol ; 83(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28213545

ABSTRACT

Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (µ = 3.3) than those at Catoctin MP (µ = 0.8) and at Mt. Rogers NRA (µ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.


Subject(s)
Antibiosis , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Chytridiomycota/growth & development , Skin/microbiology , Urodela/microbiology , Animals , Appalachian Region , Bacteria/genetics , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Forests , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Ecol Appl ; 27(1): 309-320, 2017 01.
Article in English | MEDLINE | ID: mdl-28052493

ABSTRACT

Emerging infectious diseases can cause host community disassembly, but the mechanisms driving the order of species declines and extirpations following a disease outbreak are unclear. We documented the community disassembly of a Neotropical tadpole community during a chytridiomycosis outbreak, triggered by the generalist fungal pathogen, Batrachochytrium dendrobatidis (Bd). Within the first 11 months of Bd arrival, tadpole density and occupancy rapidly declined. Species rarity, in terms of tadpole occupancy and adult relative abundance, did not predict the odds of tadpole occupancy declines. But species losses were taxonomically selective, with glassfrogs (Family: Centrolenidae) disappearing the fastest and tree frogs (Family: Hylidae) and dart-poison frogs (Family: Dendrobatidae) remaining the longest. We detected biotic homogenization of tadpole communities, with post-decline communities resembling one another more strongly than pre-decline communities. The entire tadpole community was extirpated within 22 months following Bd arrival, and we found limited signs of recovery within 10 years post-outbreak. Because of imperfect species detection inherent to sampling species-rich tropical communities and the difficulty of devising a single study design protocol to sample physically complex tropical habitats, we used simulations to provide recommendations for future surveys to adequately sample diverse Neotropical communities. Our unique data set on tadpole community composition before and after Bd arrival is a valuable baseline for assessing amphibian recovery. Our results are of direct relevance to conservation managers and community ecologists interested in understanding the timing, magnitude, and consequences of disease outbreaks as emerging infectious diseases spread globally.


Subject(s)
Anura , Biota , Chytridiomycota/physiology , Mycoses/veterinary , Animals , Anura/growth & development , Anura/physiology , Larva/growth & development , Larva/physiology , Mycoses/microbiology , Panama , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...