Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
EMBO Rep ; 25(3): 1650-1684, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424230

ABSTRACT

Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.


Subject(s)
Emphysema , Microvascular Rarefaction , Pulmonary Emphysema , Telomerase , Mice , Animals , Telomere Shortening , Telomerase/genetics
2.
Nat Aging ; 3(7): 829-845, 2023 07.
Article in English | MEDLINE | ID: mdl-37414987

ABSTRACT

Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection. Relative to young hamsters, aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Early treatment with ABT-263 lowered pulmonary viral load in aged (but not young) animals, an effect associated with lower expression of ACE2, the receptor for SARS-CoV-2. ABT-263 treatment also led to lower pulmonary and systemic levels of senescence-associated secretory phenotype factors and to amelioration of early and late lung disease. These data demonstrate the causative role of age-associated pre-existing senescent cells on COVID-19 severity and have clear clinical relevance.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Viral Load , Lung , Mesocricetus , Inflammation , Cellular Senescence
3.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-37092554

ABSTRACT

Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.


Subject(s)
Obesity , Osteopontin , Mice , Animals , Osteopontin/genetics , Obesity/genetics , Adipose Tissue , Macrophages , Phagocytosis
4.
Circulation ; 147(8): 650-666, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36515093

ABSTRACT

BACKGROUND: Senescent cells (SCs) are involved in proliferative disorders, but their role in pulmonary hypertension remains undefined. We investigated SCs in patients with pulmonary arterial hypertension and the role of SCs in animal pulmonary hypertension models. METHODS: We investigated senescence (p16, p21) and DNA damage (γ-H2AX, 53BP1) markers in patients with pulmonary arterial hypertension and murine models. We monitored p16 activation by luminescence imaging in p16-luciferase (p16LUC/+) knock-in mice. SC clearance was obtained by a suicide gene (p16 promoter-driven killer gene construct in p16-ATTAC mice), senolytic drugs (ABT263 and cell-permeable FOXO4-p53 interfering peptide [FOXO4-DRI]), and p16 inactivation in p16LUC/LUC mice. We investigated pulmonary hypertension in mice exposed to normoxia, chronic hypoxia, or hypoxia+Sugen, mice overexpressing the serotonin transporter (SM22-5-HTT+), and rats given monocrotaline. RESULTS: Patients with pulmonary arterial hypertension compared with controls exhibited high lung p16, p21, and γ-H2AX protein levels, with abundant vascular cells costained for p16, γ-H2AX, and 53BP1. Hypoxia increased thoracic bioluminescence in p16LUC/+ mice. In wild-type mice, hypoxia increased lung levels of senescence and DNA-damage markers, senescence-associated secretory phenotype components, and p16 staining of pulmonary endothelial cells (P-ECs, 30% of lung SCs in normoxia), and pulmonary artery smooth muscle cells. SC elimination by suicide gene or ABT263 increased the right ventricular systolic pressure and hypertrophy index, increased vessel remodeling (higher dividing proliferating cell nuclear antigen-stained vascular cell counts during both normoxia and hypoxia), and markedly decreased lung P-ECs. Pulmonary hemodynamic alterations and lung P-EC loss occurred in older p16LUC/LUC mice, wild-type mice exposed to Sugen or hypoxia+Sugen, and SM22-5-HTT+ mice given either ABT263 or FOXO4-DRI, compared with relevant controls. The severity of monocrotaline-induced pulmonary hypertension in rats was decreased slightly by ABT263 for 1 week but was aggravated at 3 weeks, with loss of P-ECs. CONCLUSIONS: Elimination of senescent P-ECs by senolytic interventions may worsen pulmonary hemodynamics. These results invite consideration of the potential impact on pulmonary vessels of strategies aimed at controlling cell senescence in various contexts.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Pulmonary Arterial Hypertension/metabolism , Endothelial Cells/metabolism , Monocrotaline/metabolism , Senotherapeutics , Pulmonary Artery , Familial Primary Pulmonary Hypertension/metabolism , Hypoxia/metabolism , Cellular Senescence , Forkhead Transcription Factors/metabolism
7.
Biol Res ; 54(1): 23, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344467

ABSTRACT

The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure.


Subject(s)
Heart Defects, Congenital , Noonan Syndrome , Cardiomegaly , Humans , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction
8.
Eur Respir J ; 58(2)2021 08.
Article in English | MEDLINE | ID: mdl-33509955

ABSTRACT

BACKGROUND: Cell senescence is a key process in age-associated dysfunction and diseases, notably chronic obstructive pulmonary disease (COPD). We previously identified phospholipase A2 receptor 1 (PLA2R1) as a positive regulator of cell senescence acting via Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling. Its role in pathology, however, remains unknown. Here, we assessed PLA2R1-induced senescence in COPD and lung emphysema pathogenesis. METHODS: We assessed cell senescence in lungs and cultured lung cells from patients with COPD and controls subjected to PLA2R1 knockdown, PLA2R1 gene transduction and treatment with the JAK1/2 inhibitor ruxolitinib. To assess whether PLA2R1 upregulation caused lung lesions, we developed transgenic mice overexpressing PLA2R1 (PLA2R1-TG) and intratracheally injected wild-type mice with a lentiviral vector carrying the Pla2r1 gene (LV-PLA2R1 mice). RESULTS: We found that PLA2R1 was overexpressed in various cell types exhibiting senescence characteristics in COPD lungs. PLA2R1 knockdown extended the population doubling capacity of these cells and inhibited their pro-inflammatory senescence-associated secretory phenotype (SASP). PLA2R1-mediated cell senescence in COPD was largely reversed by treatment with the potent JAK1/2 inhibitor ruxolitinib. Five-month-old PLA2R1-TG mice exhibited lung cell senescence, and developed lung emphysema and lung fibrosis together with pulmonary hypertension. Treatment with ruxolitinib induced reversal of lung emphysema and fibrosis. LV-PLA2R1-treated mice developed lung emphysema within 4 weeks and this was markedly attenuated by concomitant ruxolitinib treatment. CONCLUSIONS: Our data support a major role for PLA2R1 activation in driving lung cell senescence and lung alterations in COPD. Targeting JAK1/2 may represent a promising therapeutic approach for COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Cellular Senescence , Humans , Lung , Mice , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptors, Phospholipase A2
9.
Biol. Res ; 54: 23-23, 2021. ilus, tab
Article in English | LILACS | ID: biblio-1505793

ABSTRACT

The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Highlights - The Ras (Rat Sarcoma) gene family is a group of small G proteins - Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy - Ras directly affects cardiomyocyte physiological and pathological hypertrophy - Genetic alterations of Ras and its pathways result in various cardiac phenotypes? - Ras and its pathway are differentially regulated in acquired heart disease - Ras modulation is a promising therapeutic target in various cardiac conditions.


Subject(s)
Humans , Heart Defects, Congenital , Noonan Syndrome , Signal Transduction , Cardiomegaly , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System
10.
JCI Insight ; 4(19)2019 10 03.
Article in English | MEDLINE | ID: mdl-31578304

ABSTRACT

Oxidative stress is a major contributor to chronic lung diseases. Antioxidants such as N-acetylcysteine (NAC) are broadly viewed as protective molecules that prevent the mutagenic effects of reactive oxygen species. Antioxidants may, however, increase the risk of some forms of cancer and accelerate lung cancer progression in murine models. Here, we investigated chronic NAC treatment in aging mice displaying lung oxidative stress and cell senescence due to inactivation of the transcription factor JunD, which is downregulated in diseased human lungs. NAC treatment decreased lung oxidative damage and cell senescence and protected from lung emphysema but concomitantly induced the development of lung adenocarcinoma in 50% of JunD-deficient mice and 10% of aged control mice. This finding constitutes the first evidence to our knowledge of a carcinogenic effect of antioxidant therapy in the lungs of aged mice with chronic lung oxidative stress and warrants the utmost caution when considering the therapeutic use of antioxidants.


Subject(s)
Acetylcysteine/adverse effects , Acetylcysteine/pharmacology , Adenocarcinoma of Lung/chemically induced , Antioxidants/adverse effects , Antioxidants/pharmacology , Pulmonary Emphysema/drug therapy , Adenocarcinoma of Lung/pathology , Animals , Disease Models, Animal , Female , Humans , Lung/pathology , Lung Diseases/pathology , Lung Neoplasms , Male , Mice , Mice, Knockout , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-jun/genetics , Pulmonary Emphysema/pathology , Reactive Oxygen Species
11.
Crit Care ; 23(1): 321, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31533788

ABSTRACT

BACKGROUND: Weaning-induced cardiac pulmonary edema (WiPO) is one of the main mechanisms of weaning failure during mechanical ventilation. We hypothesized that weaning-induced cardiac ischemia (WiCI) may contribute to weaning failure from cardiac origin. METHODS: A prospective cohort study of patients mechanically ventilated for at least 24 h who failed a first spontaneous breathing trial (SBT) was conducted in four intensive care units. Patients were explored during a second SBT using multiple tools (echocardiography, continuous 12-lead ST monitoring, biomarkers) to scrutinize the mechanisms of weaning failure. WiPO definition was based on three criteria (echocardiographic signs of increased left atrial pressure, increase in B-type natriuretic peptides, or increase in protein concentration during SBT) according to a conservative definition (at least two criteria) and a liberal definition (at least one criterion). WiCI was diagnosed according to the third universal definition of myocardial infarction proposed by the European Society of Cardiology (ESC) and the American Heart Association (AHA) statement for exercise testing. RESULTS: Among patients who failed a first SBT, WiPO occurred in 124/208 (59.6%) and 44/208 (21.2%) patients, according to the liberal and conservative definition, respectively. Among patients with ST monitoring, WiCI was diagnosed in 36/177 (20.3%) and 12/177 (6.8%) of them, according to the ESC and AHA definitions, respectively. WiCI was not associated with WiPO and was not associated with weaning outcomes. Only two patients of the cohort were treated for an acute coronary syndrome after the second SBT, and seven other patients required coronary angiography during the weaning period. CONCLUSIONS: This observational study showed the common occurrence of pulmonary edema in mechanically ventilated patients who failed a first SBT, but the association with cardiac ischemia and weaning outcomes was weak.


Subject(s)
Myocardial Ischemia/etiology , Ventilator Weaning/adverse effects , Aged , Biomarkers/analysis , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Middle Aged , Myocardial Ischemia/physiopathology , Natriuretic Peptide, Brain/analysis , Natriuretic Peptide, Brain/blood , Peptide Fragments/analysis , Peptide Fragments/blood , Prospective Studies , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Ventilator Weaning/methods
12.
Eur Respir J ; 54(4)2019 10.
Article in English | MEDLINE | ID: mdl-31320454

ABSTRACT

Macrophages are major players in the pathogenesis of pulmonary arterial hypertension (PAH).To investigate whether lung macrophages and pulmonary-artery smooth muscle cells (PASMCs) collaborate to stimulate PASMC growth and whether the CCL2-CCR2 and CCL5-CCR5 pathways inhibited macrophage-PASMC interactions and PAH development, we used human CCR5-knock-in mice and PASMCs from patients with PAH and controls.Conditioned media from murine M1 or M2 macrophages stimulated PASMC growth. This effect was markedly amplified with conditioned media from M2 macrophage/PASMC co-cultures. CCR2, CCR5, CCL2 and CCL5 were upregulated in macrophage/PASMC co-cultures. Compared to inhibiting either receptor, dual CCR2 and CCR5 inhibition more strongly attenuated the growth-promoting effect of conditioned media from M2-macrophage/PASMC co-cultures. Deleting either CCR2 or CCR5 in macrophages or PASMCs attenuated the growth response. In mice with hypoxia- or SUGEN/hypoxia-induced PH, targeting both CCR2 and CCR5 prevented or reversed PH more efficiently than targeting either receptor alone. Patients with PAH exhibited CCR2 and CCR5 upregulation in PASMCs and perivascular macrophages compared to controls. The PASMC growth-promoting effect of conditioned media from M2-macrophage/PASMC co-cultures was greater when PASMCs from PAH patients were used in the co-cultures or as the target cells and was dependent on CCR2 and CCR5. PASMC migration toward M2-macrophages was greater with PASMCs from PAH patients and was attenuated by blocking CCR2 and CCR5.CCR2 and CCR5 are required for collaboration between macrophages and PASMCs to initiate and amplify PASMC migration and proliferation during PAH development. Dual targeting of CCR2 and CCR5 may hold promise for treating human PAH.


Subject(s)
Macrophages/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/metabolism , Receptors, CCR2/metabolism , Receptors, CCR5/metabolism , Adolescent , Adult , Animals , Cell Communication , Cell Movement/genetics , Cell Proliferation/genetics , Coculture Techniques , Culture Media, Conditioned , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Male , Mice , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/cytology , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Receptors, CCR2/genetics , Receptors, CCR5/genetics , Young Adult
13.
ESC Heart Fail ; 6(4): 649-657, 2019 08.
Article in English | MEDLINE | ID: mdl-31115164

ABSTRACT

AIMS: Cardiac fibrosis is associated with left ventricular (LV) remodelling and contractile dysfunction in aortic stenosis (AS). The fibrotic process in this condition is still unclear. The aim of this study was to determine the role of both local and systemic inflammation as underlying mechanisms of LV fibrosis and contractile dysfunction. The diagnostic values of 2D-strain echocardiography and serum biomarkers in the evaluation of cardiac fibrosis in this condition were assessed through correlation analyses. METHODS AND RESULTS: Patients with AS referred for surgical valve replacement were prospectively and consecutively included. They all had a comprehensive echocardiography including 2D strain. Blood samples were collected to measure cytokines and inflammatory biomarkers using Luminex bead-based assays. A per-surgical myocardial biopsy of the basal antero-septal segment (S1) was performed. Serial sections of each biopsy were stained with Sirius red. Digital image analysis was used to quantify fibrosis. Immunostainings using specific antibodies against macrophage, glycoprotein (gp) 130, and interleukin 6 (IL-6) were also performed. Patients were divided into tertiles reflecting the severity of fibrosis: mild, moderate, and severe load (TF1 to TF3). The mean age of the 58 included patients was 73 ± 11 years. Twenty-four (43%) were in New York Heart Association III-IV. Mean aortic valve area was 0.8 ± 0.2 cm2 . Mean aortic stenosis peak velocity and mean gradient were respectively 4.5 ± 0.8 m/s and 54 ± 15 mmHg. The mean LV ejection fraction was 54 ± 12%, and the global LV longitudinal strain was -15 ± 4%. The mean S1 strain, corresponding to the biopsied region, was -10 ± 6% and was strongly correlated to fibrosis load (R = 0.83, P < 0.0001). TF3 was associated with higher mortality (P = 0.009), higher serum C-reactive protein and IL-6, and lower gp130 compared with the other tertiles (P < 0.05). IL-6 and gp130 were expressed in the heart and respectively in the plasma membrane of macrophages and in the cytoplasm of both macrophages and cardiomyocytes. During follow-up, three patients died and were all in the third fibrosis tertile. CONCLUSIONS: We found a positive correlation between elevated inflammatory markers and degree of fibrosis load. These two parameters were associated with worse outcomes in patients with severe AS. Our results may be of interest especially in patients for whom a transcatheter aortic valve implantation is indicated and myocardial biopsy is not possible. Strategies aiming at preventing inflammation might be considered to decrease or limit the progression of cardiac fibrosis in patients followed for AS.


Subject(s)
Aortic Valve Stenosis/complications , Aortic Valve Stenosis/surgery , Heart Valve Prosthesis Implantation , Myocardium/pathology , Aged , Aged, 80 and over , Female , Fibrosis/complications , Fibrosis/etiology , Humans , Male , Middle Aged , Prospective Studies
15.
Cardiovasc Res ; 115(12): 1778-1790, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30605506

ABSTRACT

AIMS: Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of ß-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS: Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/ß a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/ß phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION: Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/ß phosphorylation.


Subject(s)
Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Heart Failure/enzymology , Hemodynamics , Myocardial Contraction , Myocardium/enzymology , Ventricular Dysfunction, Left/enzymology , Ventricular Function, Left , Adenylyl Cyclases/genetics , Age Factors , Animals , Calcium-Binding Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Progression , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Heart Failure/diagnostic imaging , Heart Failure/genetics , Heart Failure/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Second Messenger Systems , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology
17.
J Cardiovasc Pharmacol ; 71(5): 283-292, 2018 05.
Article in English | MEDLINE | ID: mdl-29438213

ABSTRACT

Nitric oxide (NO) donors may be useful for treating pulmonary hypertension (PH) complicating sickle cell disease (SCD), as endogenous NO is inactivated by hemoglobin released by intravascular hemolysis. Here, we investigated the effects of the new NO donor NCX1443 on PH in transgenic SAD mice, which exhibit mild SCD without severe hemolytic anemia. In SAD and wild-type (WT) mice, the pulmonary pressure response to acute hypoxia was similar and was abolished by 100 mg/kg NCX1443. The level of PH was also similar in SAD and WT mice exposed to chronic hypoxia (9% O2) alone or with SU5416 and was similarly reduced by daily NCX1443 gavage. Compared with WT mice, SAD mice exhibited higher levels of HO-1, endothelial NO synthase, and PDE5 but similar levels of lung cyclic guanosine monophosphate. Cultured pulmonary artery smooth muscle cells from SAD mice grew faster than those from WT mice and had higher PDE5 protein levels. Combining NCX1443 and a PDE5 inhibitor suppressed the growth rate difference between SAD and WT cells and induced a larger reduction in hypoxic PH severity in SAD than in WT mice. By amplifying endogenous protective mechanisms, NCX1443 in combination with PDE5 inhibition may prove useful for treating PH complicating SCD.


Subject(s)
Anemia, Sickle Cell/drug therapy , Antihypertensive Agents/pharmacology , Arterial Pressure/drug effects , Hypertension, Pulmonary/prevention & control , Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Pulmonary Artery/drug effects , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/metabolism , Animals , Antihypertensive Agents/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Disease Models, Animal , Heme Oxygenase-1/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypoxia/complications , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nitric Oxide Donors/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology
18.
JCI Insight ; 3(3)2018 02 08.
Article in English | MEDLINE | ID: mdl-29415880

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a highly prevalent and devastating condition for which no curative treatment is available. Exaggerated lung cell senescence may be a major pathogenic factor. Here, we investigated the potential role for mTOR signaling in lung cell senescence and alterations in COPD using lung tissue and derived cultured cells from patients with COPD and from age- and sex-matched control smokers. Cell senescence in COPD was linked to mTOR activation, and mTOR inhibition by low-dose rapamycin prevented cell senescence and inhibited the proinflammatory senescence-associated secretory phenotype. To explore whether mTOR activation was a causal pathogenic factor, we developed transgenic mice exhibiting mTOR overactivity in lung vascular cells or alveolar epithelial cells. In this model, mTOR activation was sufficient to induce lung cell senescence and to mimic COPD lung alterations, with the rapid development of lung emphysema, pulmonary hypertension, and inflammation. These findings support a causal relationship between mTOR activation, lung cell senescence, and lung alterations in COPD, thereby identifying the mTOR pathway as a potentially new therapeutic target in COPD.


Subject(s)
Lung/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/pathology , TOR Serine-Threonine Kinases/metabolism , Aged , Animals , Case-Control Studies , Cells, Cultured , Cellular Senescence/drug effects , Female , Humans , Lung/cytology , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Primary Cell Culture , Pulmonary Emphysema/genetics , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Tobacco Smoking/pathology , Tuberous Sclerosis Complex 1 Protein/deficiency , Tuberous Sclerosis Complex 1 Protein/genetics
19.
Am J Respir Cell Mol Biol ; 56(5): 597-608, 2017 05.
Article in English | MEDLINE | ID: mdl-28125278

ABSTRACT

Monocytes/macrophages are major effectors of lung inflammation associated with various forms of pulmonary hypertension (PH). Interactions between the CCL2/CCR2 and CX3CL1/CX3CR1 chemokine systems that guide phagocyte infiltration are incompletely understood. Our objective was to explore the individual and combined actions of CCL2/CCR2 and CX3CL1/CX3CR1 in hypoxia-induced PH in mice; particularly their roles in monocyte trafficking, macrophage polarization, and pulmonary vascular remodeling. The development of hypoxia-induced PH was associated with marked increases in lung levels of CX3CR1, CCR2, and their respective ligands, CX3CL1 and CCL2. Flow cytometry revealed that both inflammatory Ly6Chi and resident Ly6Clo monocyte subsets exhibited sustained increases in blood and a transient peak in lung tissue, and that lung perivascular and alveolar macrophage counts showed sustained elevations. CX3CR1-/- mice were protected against hypoxic PH compared with wild-type mice, whereas CCL2-/- mice and double CX3CR1-/-/CCL2-/- mice exhibited similar PH severity, as did wild-type mice. The protective effects of CX3CR1 deficiency occurred concomitantly with increases in lung monocyte and macrophage counts and with a change from M2 to M1 macrophage polarization that markedly diminished the ability of conditioned media to induce pulmonary artery smooth muscle cell (PA-SMC) proliferation, which was partly dependent on CX3CL1 secretion. Results in mice given the CX3CR1 inhibitor F1 were similar to those in CX3CR1-/- mice. In conclusion, CX3CR1 deficiency protects against hypoxia-induced PH by modulating monocyte recruitment, macrophage polarization, and PA-SMC cell proliferation. Targeting CX3CR1 may hold promise for treating PH.


Subject(s)
Chemokine CCL2/metabolism , Chemokine CX3CL1/metabolism , Hypertension, Pulmonary/metabolism , Lung/pathology , Receptors, CCR2/metabolism , Receptors, Chemokine/metabolism , Animals , CX3C Chemokine Receptor 1 , Cell Movement , Gene Deletion , Hypertension, Pulmonary/complications , Hypoxia/complications , Hypoxia/metabolism , Ligands , Macrophages/metabolism , Male , Mice, Inbred C57BL , Monocytes/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , Pulmonary Artery/pathology
20.
Arterioscler Thromb Vasc Biol ; 36(9): 1879-90, 2016 09.
Article in English | MEDLINE | ID: mdl-27444202

ABSTRACT

OBJECTIVE: Senescent pulmonary artery smooth muscle cells (PA-SMCs) may contribute to the pathogenesis of pulmonary hypertension by producing secreted factors. The aim of this study was to explore the role in pulmonary hypertension of extracellular matrix proteins released by senescent PA-SMCs. APPROACH AND RESULTS: Polymerase chain reaction array analysis of human PA-SMCs undergoing replicative senescence revealed osteopontin upregulation, which mediated the stimulatory effect of senescent PA-SMC media and matrix on PA-SMC growth and migration. Osteopontin was upregulated in lungs from patients with chronic obstructive pulmonary disease or idiopathic pulmonary arterial hypertension. Prominent osteopontin immunostaining was noted in PA-SMCs that also stained for p16 at sites of vascular hypertrophy, and lung osteopontin levels correlated closely with age. Compared with younger mice, 1-year-old mice displayed higher lung osteopontin levels, right ventricular systolic pressure, pulmonary vessel muscularization, and numbers of PA-SMCs stained for p16 or p21 and also for osteopontin. No such changes with age were observed in osteopontin(-/-) mice, which developed attenuated pulmonary hypertension during hypoxia. Compared with cultured PA-SMCs from young mice, PA-SMCs from 1-year-old mice grew faster; a similar fast growth rate was seen with PA-SMCs from young mice stimulated by matrix or media from old mice. Differences between old/young mouse PA-SMC growth rates were suppressed by antiosteopontin antibodies. PA-SMCs from osteopontin(-/-) mice grew more slowly than did wild-type PA-SMCs; they were stimulated by wild-type PA-SMCs media and matrix, and this effect was stronger with PA-SMCs from older versus younger mice. CONCLUSIONS: Osteopontin is a key mediator released by senescent PA-SMCs and contributing to pulmonary hypertension progression.


Subject(s)
Cellular Senescence , Familial Primary Pulmonary Hypertension/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Osteopontin/metabolism , Adult , Age Factors , Aged , Animals , Case-Control Studies , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Extracellular Matrix Proteins/metabolism , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/physiopathology , Female , Genotype , Hemodynamics , Humans , Hyperplasia , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Osteopontin/deficiency , Osteopontin/genetics , Phenotype , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Signal Transduction , Up-Regulation , Ventricular Function, Right
SELECTION OF CITATIONS
SEARCH DETAIL