Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 248: 114322, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36455351

ABSTRACT

Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.


Subject(s)
Cortisone , Environmental Pollutants , Wastewater , Soil , Persistent Organic Pollutants
2.
Front Plant Sci ; 13: 983830, 2022.
Article in English | MEDLINE | ID: mdl-36160996

ABSTRACT

Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.

3.
Ecotoxicol Environ Saf ; 230: 113165, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34998263

ABSTRACT

In modern agriculture and globalization, the release of trace metals from manufacturing effluents hinders crop productivity by polluting the atmosphere and degrading food quality. Sustaining food safety in polluted soils is critical to ensure global food demands. This review describes the negative effects of trace metals stress on plant growth, physiology, and yield. Furthermore, also explains the potential of biochar in the remediation of trace metal's contaminations in plants by adoption of various mechanisms such as reduction, ion exchange, electrostatic forces of attraction, precipitation, and complexation. Biochar application enhances the overall productivity, accumulation of biomass, and photosynthetic activity of plants through the regulation of various biochemical and physiological mechanisms of plants cultivated under trace metals contaminated soil. Moreover, biochar scavenges the formation of reactive oxygen species, by activating antioxidant enzyme production i.e., ascorbate peroxidase, catalase, superoxide dismutase, peroxidase, etc. The application of biochar also improves the synthesis of stressed proteins and proline contents in plants thus maintaining the osmoprotectant and osmotic potential of the plant under contaminates stress. Integrated application of biochar with other amendments i.e., microorganisms and plant nutrients to improve trace metal remediation potential of biochar and improving crop production was also highlighted in this review. Moreover, future research needs regarding the application of biochar have also been addressed.

4.
Plants (Basel) ; 10(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834853

ABSTRACT

This study reports the mitigating strategy against salinity by exploring the potential effects of biochar (5%), Arbuscular mycorrhizal fungi (20 g/pot, AMF), and biochar + AMF on maize (Zea mays L.) plants grown under saline stress in a greenhouse. The maize was grown on alkaline soil and subjected to four different saline levels; 0, 50, 100, and 150 mM NaCl. After 90 d for 100 mM NaCl treatment, the plant's height and fresh weight were reduced by 17.84% and 39.28%, respectively, compared to the control. When the saline-treated soil (100 mM NaCl) was amended with AMF, biochar, and biochar + AMF, the growth parameters were increased by 22.04%, 26.97%, 30.92% (height) and 24.79%, 62.36%, and 107.7% (fresh weight), respectively. Compared to the control and single AMF/biochar treatments, the combined application of biochar and AMF showed the most significant effect in improving maize growth under saline stress. The superior mitigating effect of biochar + AMF was attributed to its effective ability in (i) improving soil nutrient content, (ii) enhancing plant nutrient uptake, (iii) increasing the activities of antioxidant enzymes, and (iv improving the contents of palmitoleic acid (C16:1), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). Thus, our study shows that amending alkaline and saline soils with a combination of biochar-AMF can effectively mitigate abiotic stress and improve plant growth. Therefore, it can serve as a reference for managing salinity stress in agricultural soils.

5.
PeerJ ; 9: e11937, 2021.
Article in English | MEDLINE | ID: mdl-34466287

ABSTRACT

BACKGROUND: Soil application of biochar and straw alone or their combinations with nitrogen (N) fertilizer are becoming increasingly common, but little is known about their agronomic and environmental performance in semiarid environments. This study was conducted to investigate the effect(s) of these amendments on soil properties, nitrous oxide (N2O) and methane (CH4) emissions and grain and biomass yield of spring wheat (Triticum aestivum L.), and to produce background dataset that may be used to inform nutrient management guidelines for semiarid environments. METHODS: The experiment involved the application of biochar, straw or urea (46% nitrogen [N]) alone or their combinations. The treatments were: CN0-control (zero-amendment), CN50 -50 kg ha-1 N, CN100-100 kg ha-1 N, BN0 -15 t ha-1 biochar, BN50-15 t ha-1 biochar + 50 kg ha-1 N, BN100-15 t ha-1 biochar + 100 kg ha-1 N, SN0 -4.5 t ha-1 straw, SN50 -4.5 t ha-1 straw + 50 kg ha-1 N and SN100-4.5 t ha-1 straw + 100 kg ha-1 N. Fluxes of N2O, CH4 and grain yield were monitored over three consecutive cropping seasons between 2014 and 2016 using the static chamber-gas chromatography method. RESULTS: On average, BN100reported the highest grain yield (2054 kg ha-1), which was between 25.04% and 38.34% higher than all other treatments. In addition, biomass yield was much higher under biochar treated plots relative to the other treatments. These findings are supported by the increased in soil organic C by 17.14% and 21.65% in biochar amended soils (at 0-10 cm) compared to straw treated soils and soils without carbon respectively. The BN100treatment also improved bulk density and hydraulic properties (P < 0.05), which supported the above results. The greatest N2O emissions and CH4 sink were recorded under the highest rate of N fertilization (100 kg N ha-1). Cumulative N2O emissions were 39.02% and 48.23% lower in BN100 compared with CN0 and CN100, respectively. There was also a ≈ 37.53% reduction in CH4 uptake under BN100compared with CN0-control and CN50. The mean cumulative N2O emission from biochar treated soils had a significant decrease of 10.93% and 38.61% compared to straw treated soils and soils without carbon treatment, respectively. However, differences between mean cumulative N2O emission between straw treated soils and soils without carbon were not significant. These results indicate the dependency of crop yield, N2O and CH4 emissions on soil quality and imply that crop productivity could be increased without compromising on environmental quality when biochar is applied in combination with N-fertilizer. The practice of applying biochar with N fertilizer at 100 kg ha-1 N resulted in increases in crop productivity and reduced N2O and CH4soil emissions under dryland cropping systems.

6.
Environ Res ; 197: 111031, 2021 06.
Article in English | MEDLINE | ID: mdl-33744268

ABSTRACT

Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Ecosystem , Humans , Hydrocarbons/toxicity , Petroleum/toxicity , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
7.
Ecotoxicol Environ Saf ; 214: 112112, 2021 May.
Article in English | MEDLINE | ID: mdl-33714140

ABSTRACT

Sole biochar addition or microbial inoculation as a soil amendment helps to reduce cadmium (Cd) toxicity in polluted agricultural soils. Yet the synergistic effects of microorganisms and biochar application on Cd absorption and plant productivity remain unclear. Therefore, a pot experiment was conducted to investigate the combined effect of microorganisms (Trichoderma harzianum L. and Bacillus subtilis L.), biochar (maize straw, cow manure, and poultry manure), and Cd (0, 10, and 30 ppm) on plant physiology and growth to test how biochar influences microbial growth and plant nutrient uptake, and how biochar ameliorates under Cd-stressed soil. Results showed that in comparison to non-Cd polluted soil, the highest reduction in chlorophyll content, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and intercellular CO2 were observed in Cd2 (30 ppm), which were 9.34%, 22.95%, 40.45%, 29.07%, 20.67%, and 22.55% respectively less than the control Cd0 (0 ppm). Among sole inoculation of microorganisms, highest stomatal conductance, water use efficiency, and intercellular CO2 were recorded with combined inoculation of both microorganisms (M3), which were 5.92%, 7.65%, and 7.28% respectively higher than the control, and reduced the Cd concentration in soil, root, and shoot by 21.34%, 28.36%, and 20.95%, respectively, compared to the control. Similarly, co-application of microorganisms and biochar ameliorated the adverse effect of Cd in soybean as well as significantly improved plant biomass, photosynthetic activity, nutrient contents, and antioxidant enzyme activities, and minimized the production of reactive oxygen species and Cd content in plants. Soil amended with poultry manure biochar had significantly improved the soil organic carbon, total nitrogen, total phosphorous, and available potassium by 43.53%, 36.97%, 22.28%, and 4.24%, respectively, and decreased the concentration of Cd in plant root and shoot by 34.68% and 47.96%, respectively, compared to the control. These findings indicate that the combined use of microorganisms and biochar as an amendment have important synergistic effects not only on the absorption of nutrients but also on the reduction of soybean Cd intake, and improve plant physiology of soybean cultivated in Cd-polluted soils as compared to sole application of microorganisms or biochar.


Subject(s)
Bacillus subtilis , Cadmium/analysis , Charcoal , Glycine max/growth & development , Glycine max/metabolism , Hypocreales , Soil Pollutants/analysis , Cadmium/metabolism , Manure , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Potassium/metabolism , Soil Pollutants/metabolism , Zea mays
8.
Ecotoxicol Environ Saf ; 211: 111887, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33450535

ABSTRACT

Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.


Subject(s)
Biodegradation, Environmental , Cadmium/toxicity , Environmental Restoration and Remediation , Soil Pollutants/toxicity , Agriculture , Cadmium/metabolism , Charcoal , Composting , Fertilizers , Humans , Manure , Metals , Rhizosphere , Soil , Soil Pollutants/analysis , Trace Elements
9.
Front Plant Sci ; 12: 809322, 2021.
Article in English | MEDLINE | ID: mdl-35178057

ABSTRACT

Cadmium (Cd) contamination of croplands jeopardizes sustainable crop production and human health. However, curtailing Cd transfer and mobility in the rhizosphere-plant system is challenging. Sole application of biochar (BC) and thiourea (TU) has been reported to restrain Cd toxicity and uptake in plants. However, the combined applications of BC and TU in mitigating the harmful effects of Cd on plants have not yet been thoroughly investigated. Therefore, this study attempts to explore the integrated impact of three maize stalk BC application rates [B 0 (0% w/w), B 1 (2.5% w/w), and B 2 (5% w/w)] and three TU foliar application rates [T 0 (0 mg L-1), T 1 (600 mg L-1), and T 2 (1,200 mg L-1)] in remediating the adverse effects of Cd on maize growth, development, and physiology. Results demonstrated that Cd concentration in soil inhibited plant growth by reducing leaf area, photosynthesis activity, and enhanced oxidative stress in maize. Nevertheless, BC and TU application in combination (B 2 T 2) improved the fresh biomass, shoot height, leaf area, and photosynthesis rate of maize plants by 27, 42, 36, and 15%, respectively, compared with control (B 0 T 0). Additionally, the oxidative stress values [malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL)] were minimized by 26, 20, and 21%, respectively, under B 2 T 2 as compared with B 0 T 0. Antioxidant enzyme activities [superoxide dismutase (SOD) and catalase (CAT)] were 81 and 58%, respectively, higher in B 2 T 2 than in B 0 T 0. Besides, the shoot and root Cd concentrations were decreased by 42 and 49%, respectively, under B 2 T 2 compared with B 0 T 0. The recent study showed that the integrated effects of BC and TU have significant potential to improve the growth of maize on Cd-contaminated soil by reducing Cd content in plant organs (shoots and roots).

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-408815

ABSTRACT

Androgens, the male sex hormones, play an essential role in male sexual differentiation and development. However, the influence of these sex hormones extends beyond their roles in sexual differentiation and development. In many animal species, sex hormones have been shown to be essential for sexual differentiation of the brain during development and for maintaining sexually dimorphic behavior throughout life. The principals of sex determination in humans have been demonstrated to be similar to other mammals. However, the hormonal influence on sexual dimorphic differences in the nervous system in humans, sex differences in behaviors, and its correlations with those of other mammals is still an emerging field. In this review, the roles of androgens in gender and cognitive function are discussed with the emphasis on subjects with androgen action defects including complete androgen insensitivity due to androgen receptor mutations and 5α-reductase-2 deficiency syndromes due to 5α-reductase-2 gene mutations. The issue of the complex interaction of nature versus nurture is addressed.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-561195

ABSTRACT

Rheumatoid arthritis(RA) is very common in immune rheumatism, with high disease incidence and long course, hard to cure. The medicines and bio-preparation used in treating RA in modern medicine are difficult to spread and for long application owing to their unsatisfactory effect or much toxic or side effects. However, the acupuncture has definite effect without side effects. As the unique therapy in acupuncture field—abdominal acupuncture, can it bear the task of treating RA The article makes analysis and discussion on its availability.

SELECTION OF CITATIONS
SEARCH DETAIL
...