Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Biophys J ; 123(12): 1592-1609, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38702882

ABSTRACT

Sensing of the biophysical properties of membranes using molecular reporters has recently regained widespread attention. This was elicited by the development of new probes of exquisite optical properties and increased performance, combined with developments in fluorescence detection. Here, we report on fluorescence lifetime imaging of various rigid and flexible fluorescent dyes to probe the biophysical properties of synthetic and biological membranes at steady state as well as upon the action of external membrane-modifying agents. We tested the solvatochromic dyes Nile red and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD), the viscosity sensor Bodipy C12, the flipper dye FliptR, as well as the dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), Bodipy C16, lissamine-rhodamine, and Atto647, which are dyes with no previous reported environmental sensitivity. The performance of the fluorescent probes, many of which are commercially available, was benchmarked with well-known environmental reporters, with Nile red and Bodipy C12 being specific reporters of medium hydration and viscosity, respectively. We show that some widely used ordinary dyes with no previous report of sensing capabilities can exhibit competing performance compared to highly sensitive commercially available or custom-based solvatochromic dyes, molecular rotors, or flipper in a wide range of biophysics experiments. Compared to other methods, fluorescence lifetime imaging is a minimally invasive and nondestructive method with optical resolution. It enables biophysical mapping at steady state or assessment of the changes induced by membrane-active molecules at subcellular level in both synthetic and biological membranes when intensity measurements fail to do so. The results have important consequences for the specific choice of the sensor and take into consideration factors such as probe sensitivity, response to environmental changes, ease and speed of data analysis, and the probe's intracellular distribution, as well as potential side effects induced by labeling and imaging.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Cell Membrane/chemistry , Cell Membrane/metabolism
2.
PLoS One ; 18(11): e0294534, 2023.
Article in English | MEDLINE | ID: mdl-37972146

ABSTRACT

Agave potatorum Zucc. locally known as Tobalá, is an important species for mezcal production. It is a perennial species that takes 10 to 15 years to reach reproductive age. Because of high demand of Tobalá mezcal and the slow maturation of the plants, its wild populations have been under intense anthropogenic pressure. The main objective of this study was to estimate the genome-wide diversity in A. potatorum and determine if the type of management has had any effect on its diversity, inbreeding and structure. We analyzed 174 individuals (105 wild, 42 cultivated and 27 from nurseries) from 34 sites with a reduced representation genomic method (ddRADseq), using 14,875 SNPs. The diversity measured as expected heterozygosity was higher in the nursery and wild plants than in cultivated samples. We did not find private alleles in the cultivated and nursery plants, which indicates that the individuals under management recently derived from wild populations, which was supported by higher gene flow estimated from wild populations to the managed plants. We found low but positive levels of inbreeding (FIS = 0.082), probably related to isolation of the populations. We detected low genetic differentiation among populations (FST = 0.0796), with positive and significant isolation by distance. The population genetic structure in the species seems to be related to elevation and ecology, with higher gene flow among populations in less fragmented areas. We detected an outlier locus related to the recognition of pollen, which is also relevant to self-incompatibility protein (SI). Due to seed harvest and long generation time, the loss of diversity in A. potatorum has been gradual and artificial selection and incipient management have not yet caused drastic differences between cultivated and wild plants. Also, we described an agroecological alternative to the uncontrolled extraction of wild individuals.


Subject(s)
Agave , Humans , Agave/genetics , Mexico , Inbreeding , Genetic Drift , Genomics , Genetic Variation
3.
J Biol Chem ; 299(12): 105430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926280

ABSTRACT

Membrane fusion is a ubiquitous process associated with a multitude of biological events. Although it has long been appreciated that membrane mechanics plays an important role in membrane fusion, the molecular interplay between mechanics and fusion has remained elusive. For example, although different lipids modulate membrane mechanics differently, depending on their composition, molar ratio, and complex interactions, differing lipid compositions may lead to similar mechanical properties. This raises the question of whether (i) the specific lipid composition or (ii) the average mesoscale mechanics of membranes acts as the determining factor for cellular function. Furthermore, little is known about the potential consequences of fusion on membrane disruption. Here, we use a combination of confocal microscopy, time-resolved imaging, and electroporation to shed light onto the underlying mechanical properties of membranes that regulate membrane fusion. Fusion efficiency follows a nearly universal behavior that depends on membrane fluidity parameters, such as membrane viscosity and bending rigidity, rather than on specific lipid composition. This helps explaining why the charged and fluid membranes of the inner leaflet of the plasma membrane are more fusogenic than their outer counterparts. Importantly, we show that physiological levels of cholesterol, a key component of biological membranes, has a mild effect on fusion but significantly enhances membrane mechanical stability against pore formation, suggesting that its high cellular levels buffer the membrane against disruption. The ability of membranes to efficiently fuse while preserving their integrity may have given evolutionary advantages to cells by enabling their function while preserving membrane stability.


Subject(s)
Membrane Fluidity , Membrane Fusion , Cell Membrane/metabolism , Membranes/metabolism , Lipids , Lipid Bilayers/metabolism
4.
Am J Bot ; 110(8): e16216, 2023 08.
Article in English | MEDLINE | ID: mdl-37478873

ABSTRACT

PREMISE: The central Oaxaca Basin has a century-long history of agave cultivation and is hypothesized to be the region of origin of other cultivated crops. Widely cultivated for mezcal production, the perennial crop known as "espadín" is putatively derived from wild Agave angustifolia. Nevertheless, little is known about its genetic relationship to the wild A. angustifolia or how the decades-long clonal propagation has affected its genetics. METHODS: Using restriction-site-associated DNA sequencing and over 8000 single-nucleotide polymorphisms, we studied aspects of the population genomics of wild and cultivated A. angustifolia in Puebla and Oaxaca, Mexico. We assessed patterns of genetic diversity, inbreeding, distribution of genetic variation, and differentiation among and within wild populations and plantations. RESULTS: Genetic differentiation between wild and cultivated plants was strong, and both gene pools harbored multiple unique alleles. Nevertheless, we found several cultivated individuals with high genetic affinity with wild samples. Higher heterozygosity was observed in the cultivated individuals, while in total, they harbored considerably fewer alleles and presented higher linkage disequilibrium compared to the wild plants. Independently of geographic distance among sampled plantations, the genetic relatedness of the cultivated plants was high, suggesting a common origin and prevalent role of clonal propagation. CONCLUSIONS: The considerable heterozygosity found in espadín is contained within a network of highly related individuals, displaying high linkage disequilibrium generated by decades of clonal propagation and possibly by the accumulation of somatic mutations. Wild A. angustifolia, on the other hand, represents a significant genetic diversity reservoir that should be carefully studied and conserved.


Subject(s)
Agave , Genetic Variation , Agave/genetics , Genotype , Heterozygote , Genomics
5.
Biophys J ; 122(11): 2099-2111, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36474443

ABSTRACT

Lateral phase heterogeneity in biomembranes can govern cellular functions and may serve as a platform for enrichment or depletion of membrane-anchored molecules. In this work, we address the question of how the process of membrane fusion is affected by the membrane phase state (fluid or gel) and by phase coexistence, as well as the effects of fusion-mediated incorporation of exogeneous lipids on phase separation. Our system is based on the fusion of cationic fluid large unilamellar vesicles (LUVs) composed of dioleoyl trimethylammonium propane (DOTAP) and dioleoyl phosphoethanolamine (DOPE) with neutral and anionic giant unilamellar vesicles (GUVs) composed of phosphatidylcholine and phosphatidylglycerol. By changing the lipid composition of the GUVs, we modulated the phase state and charge of the different phases (charged or neutral, fluid or gel) and identified systems in which we can target fusion to specific domains on phase-separated membranes. Fusion efficiency was quantified using fluorescence microscopy-based lipid and content mixing assays, and flow chamber devices were used to assess the real-time sequence of events of the fusion process. To investigate the bilayer thermal behavior, differential scanning calorimetry (DSC) experiments were performed on LUVs. The results show that fusion is extensive in single-component GUVs only for fluid and negatively charged acceptor membranes. On the other hand, in phase-separated GUVs, high fusion efficiency was observed even when the gel phase was anionic and phase separation somewhat increased the fusion efficiency. Extensive fusion led to dissolution of the gel domains as a result of extensive incorporation of lipids in the fluid state from the fusogenic liposomes. Altogether, these findings have the potential to unravel the important role of membrane phase state, phase separation, charge, and the effects of extensive fusion on membrane organization and may give insights in the regulation of the interactions between cells and liposomes that are used in drug delivery systems.


Subject(s)
Liposomes , Unilamellar Liposomes , Liposomes/chemistry , Unilamellar Liposomes/chemistry , Drug Delivery Systems , Lipids/chemistry , Phosphatidylcholines/chemistry
6.
PeerJ ; 10: e14398, 2022.
Article in English | MEDLINE | ID: mdl-36415865

ABSTRACT

Background: Genetic diversity is fundamental for the survival of species. In particular, in a climate change scenario, it is crucial that populations maintain genetic diversity so they can adapt to novel environmental conditions. Genetic diversity in wild agaves is usually high, with low genetic differentiation among populations, in part maintained by the agave pollinators such as the nectarivorous bats. In cultivated agaves, patterns of genetic diversity vary according to the intensity of use, management, and domestication stage. In Agave tequilana Weber var. azul (A. tequilana thereafter), the plant used for tequila production, clonal propagation has been strongly encouraged. These practices may lead to a reduction in genetic diversity. Methods: We studied the diversity patterns with genome-wide SNPs, using restriction site associated DNA sequencing in cultivated samples of A. tequilana from three sites of Jalisco, Mexico. For one locality, seeds were collected and germinated in a greenhouse. We compared the genomic diversity, levels of inbreeding, genetic differentiation, and connectivity among studied sites and between adults and juvenile plants. Results: Agave tequilana presented a genomic diversity of HT = 0.12. The observed heterozygosity was higher than the expected heterozygosity. Adults were more heterozygous than juveniles. This could be a consequence of heterosis or hybrid vigor. We found a shallow genetic structure (average paired FST = 0.0044). In the analysis of recent gene flow, we estimated an average migration rate among the different populations of m = 0.25. In particular, we found a population that was the primary source of gene flow and had greater genomic diversity (HE and HO ), so we propose that this population should continue to be monitored as a potential genetic reservoir. Discussion: Our results may be the consequence of more traditional management in the studied specific region of Jalisco. Also, the exchange of seeds or propagules by producers and the existence of gene flow due to occasional sexual reproduction may play an important role in maintaining diversity in A. tequilana. For populations to resist pests, to continue evolving and reduce their risk of extinction under a climate change scenario, it is necessary to maintain genetic diversity. Under this premise we encourage to continue acting in conservation programs for this species and its pollinators.


Subject(s)
Agave , Agave/genetics , Mexico , Heterozygote , Alcoholic Beverages , Genomics
7.
Langmuir ; 38(34): 10430-10441, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35977420

ABSTRACT

Liposomes represent important drug carrier vehicles in biological systems. A fusogenic liposomal system composed of equimolar mixtures of the cationic lipid DOTAP and the phospholipid DOPE showed high fusion and delivery efficiencies with cells and lipid vesicles. However, aspects of the thermodynamics involving the interaction of these fusogenic liposomes and biomimetic systems remain unclear. Here, we investigate the fusion of this system with large unilamellar vesicles (LUVs) composed of the zwitterionic lipid POPC and increasing fractions of the anionic lipid POPG and up to 30 mol % cholesterol. The focus here is to concomitantly follow changes in size, zeta-potential, and enthalpy binding upon membrane interaction and fusion. Isothermal titration calorimetry (ITC) data showed that membrane fusion in our system is an exothermic process in the absence of cholesterol, suggesting that electrostatic attraction is the driving force for fusion. An endothermic component appeared and eventually dominated the titration at 30 mol % cholesterol, which we propose is caused by membrane fluidification when cholesterol is diluted upon fusion. The inflection points of the ITC data occurred around 0.5-0.7 POPG/DOTAP for all systems, the same stoichiometry for which zeta-potential and dynamic light scattering measurements showed an increase in size coupled with charge neutralization of the system, which is consistent with the fact that fusion in our system is charge-mediated. Microscopy observations of the final mixtures revealed the presence of giant vesicles, which is a clear indication of fusion, coexisting with intermediate-sized objects that could be the result of both fusion and/or aggregation. The results show that the fusion efficiency of the DOTAP:DOPE fusogenic system is modulated by the charge and membrane packing of the acceptor membrane and explain why the system fuses very efficiently with cells.


Subject(s)
Liposomes , Membrane Fusion , Calorimetry/methods , Cholesterol/chemistry , Liposomes/chemistry , Phospholipids/chemistry , Unilamellar Liposomes
8.
Biophys J ; 121(17): 3295-3302, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35668647

ABSTRACT

Cell membranes are highly asymmetric and their stability against poration is crucial for survival. We investigated the influence of membrane asymmetry on electroporation of giant unilamellar vesicles with membranes doped with GM1, a ganglioside asymmetrically enriched in the outer leaflet of neuronal cell membranes. Compared with symmetric membranes, the lifetimes of micronsized pores are about an order of magnitude longer suggesting that pores are stabilized by GM1. Internal membrane nanotubes caused by the GM1 asymmetry, obstruct and additionally slow down pore closure, effectively reducing pore edge tension and leading to leaky membranes. Our results point to the drastic effects this ganglioside can have on pore resealing in biotechnology applications based on poration as well as on membrane repair processes.


Subject(s)
G(M1) Ganglioside , Unilamellar Liposomes , Cell Membrane/metabolism , Electroporation , Membranes/metabolism , Unilamellar Liposomes/metabolism
9.
Ciênc. rural (Online) ; 52(1): e20200293, 2022. graf
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1286037

ABSTRACT

ABSTRACT: The harvesting process is a current challenge for the commercial production of microalgae because the biomass is diluted in the culture medium. Several methods have been proposed to harvest microalgae cells, but there is not a consensus about the optimum method for such application. Herein, the methods based on sedimentation, flocculation, and centrifugation were evaluated on the recovery of Chlorella sorokiniana BR001 cultivated in a low-nitrogen medium. C. sorokiniana BR001 was cultivated using a low-nitrogen medium to trigger the accumulation of neutral lipids and neutral carbohydrates. The biomass of C. sorokiniana BR001 cultivated in a low-nitrogen medium showed a total lipid content of 1.9 times higher (23.8 ± 4.5%) when compared to the biomass produced in a high-nitrogen medium (12.3 ± 1.2%). In addition, the biomass of the BR001 strain cultivated in a low-nitrogen medium showed a high content of neutral carbohydrates (52.1 ± 1.5%). The natural sedimentation-based process was evaluated using a sedimentation column, and it was concluded that C. sorokiniana BR001 is a non-flocculent strain. Therefore, it was evaluated the effect of different concentrations of ferric sulfate (0.005 to 1 g L-1) or aluminum sulfate (0.025 to 0.83 g L-1) on the flocculation process of C. sorokiniana BR001, but high doses of flocculant agents were required for an efficient harvest of biomass. It was evaluated the centrifugation at low speed (300 to 3,000 g) as well, and it was possible to conclude that this process was the most adequate to harvest the non-flocculent strain C. sorokiniana BR001.


RESUMO: O processo de colheita é um desafio atual para a produção comercial de microalgas porque a biomassa é diluída no meio de cultivo. Diversos métodos têm sido propostos para coletar células de microalgas, porém não existe um consenso sobre um método ótimo para tal aplicação. Neste estudo, métodos baseados em sedimentação, floculação e centrifugação foram avaliados na recuperação de Chlorella sorokiniana BR001 cultivada em um meio com baixo teor de nitrogênio. C. sorokiniana BR001 foi cultivada em um meio com baixo teor de nitrogênio para induzir ao acúmulo de lipídeos e carboidratos neutros. A biomassa de C. sorokiniana BR001 cultivada em um meio com baixo teor de nitrogênio apresentou um teor de lipídeos 1,9 vezes superior (23,8 ± 4,5%), quando comparada à biomassa produzida em um meio com alto teor de nitrogênio (12,3 ± 1,2%). Adicionalmente, a biomassa da linhagem BR001 cultivada em um meio com baixo teor de nitrogênio apresentou alto teor de carboidratos neutros (52,1 ± 1,5%). O processo baseado em sedimentação natural foi avaliado utilizando uma coluna de sedimentação e concluiu-se que C. sorokiniana BR001 é uma linhagem não floculante. Portanto, o efeito de diferentes concentrações de sulfato férrico (0,005 a 1 g L-1) ou sulfato de alumínio (0,025 a 0,83 g L-1) foram avaliados no processo de floculação de C. sorokiniana BR001, mas altas doses de floculantes foram necessárias para uma colheita de biomassa eficiente. Também foi avaliada a centrifugação em baixa velocidade (300 a 3.000 g), e foi possível concluir que este processo constituiu o mais adequado para a colheita da linhagem não floculante C. sorokiniana BR001.

10.
Nat Commun ; 12(1): 4972, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404795

ABSTRACT

A variety of artificial cells springs from the functionalization of liposomes with proteins. However, these models suffer from low durability without repair and replenishment mechanisms, which can be partly addressed by replacing the lipids with polymers. Yet natural membranes are also dynamically remodeled in multiple cellular processes. Here, we show that synthetic amphiphile membranes also undergo fusion, mediated by the protein machinery for synaptic secretion. We integrated fusogenic SNAREs in polymer and hybrid vesicles and observed efficient membrane and content mixing. We determined bending rigidity and pore edge tension as key parameters for fusion and described its plausible progression through cryo-EM snapshots. These findings demonstrate that dynamic membrane phenomena can be reconstituted in synthetic materials, thereby providing new tools for the assembly of synthetic protocells.


Subject(s)
Membrane Fusion/physiology , Membranes/metabolism , Polymers/metabolism , SNARE Proteins/chemistry , SNARE Proteins/metabolism , Animals , Cryoelectron Microscopy , Liposomes/metabolism , Nerve Tissue Proteins , Protein Binding , R-SNARE Proteins , Rats , Synaptosomal-Associated Protein 25 , Syntaxin 1 , Vesicle-Associated Membrane Protein 2
11.
Adv Sci (Weinh) ; 8(11): e2004068, 2021 06.
Article in English | MEDLINE | ID: mdl-34105299

ABSTRACT

Resealing of membrane pores is crucial for cell survival. Membrane surface charge and medium composition are studied as defining regulators of membrane stability. Pores are generated by electric field or detergents. Giant vesicles composed of zwitterionic and negatively charged lipids mixed at varying ratios are subjected to a strong electric pulse. Interestingly, charged vesicles appear prone to catastrophic collapse transforming them into tubular structures. The spectrum of destabilization responses includes the generation of long-living submicroscopic pores and partial vesicle bursting. The origin of these phenomena is related to the membrane edge tension, which governs pore closure. This edge tension significantly decreases as a function of the fraction of charged lipids. Destabilization of charged vesicles upon pore formation is universal-it is also observed with other poration stimuli. Disruption propensity is enhanced for membranes made of lipids with higher degree of unsaturation. It can be reversed by screening membrane charge in the presence of calcium ions. The observed findings in light of theories of stability and curvature generation are interpreted and mechanisms acting in cells to prevent total membrane collapse upon poration are discussed. Enhanced membrane stability is crucial for the success of electroporation-based technologies for cancer treatment and gene transfer.


Subject(s)
Cell Membrane/chemistry , Cell Survival/genetics , Lipid Bilayers/chemistry , Lipids/chemistry , Calcium/pharmacology , Cell Membrane/genetics , Detergents/pharmacology , Electromagnetic Fields/adverse effects , Electroporation , Humans , Lipid Bilayers/radiation effects , Porosity/drug effects , Porosity/radiation effects , Surface Properties
12.
Top Curr Chem (Cham) ; 379(1): 1, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33398442

ABSTRACT

Quantum dots (QDs) have attracted considerable attention as fluorescent probes for life sciences. The advantages of using QDs in fluorescence-based studies include high brilliance, a narrow emission band allowing multicolor labeling, a chemically active surface for conjugation, and especially, high photostability. Despite these advantageous features, the size of the QDs prevents their free transport across the plasma membrane, limiting their use for specific labeling of intracellular structures. Over the years, various methods have been evaluated to overcome this issue to explore the full potential of the QDs. Thus, in this review, we focused our attention on physical and biochemical QD delivery methods-electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes-discussing the benefits and drawbacks of each strategy, as well as presenting recent studies in the field. We hope that this review can be a useful reference source for researches that already work or intend to work in this area. Strategies for the intracellular delivery of quantum dots discussed in this review (electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes).


Subject(s)
Fluorescent Dyes/administration & dosage , Quantum Dots/administration & dosage , Animals , Cell-Penetrating Peptides/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Electroporation/methods , Fluorescent Dyes/analysis , Humans , Liposomes/chemistry , Microinjections/methods , Quantum Dots/analysis
13.
Biochim Biophys Acta Gen Subj ; 1865(4): 129486, 2021 04.
Article in English | MEDLINE | ID: mdl-31734458

ABSTRACT

BACKGROUND: The interest in mechanics of synthetic and biological vesicles has been continuously growing during the last decades. Liposomes serve as model systems for investigating fundamental membrane processes and properties. More recently, extracellular vesicles (EVs) have been investigated mechanically as well. EVs are widely studied in fundamental and applied sciences, but their material properties remained elusive until recently. Elucidating the mechanical properties of vesicles is essential to unveil the mechanisms behind a variety of biological processes, e.g. budding, vesiculation and cellular uptake mechanisms. SCOPE OF REVIEW: The importance of mechanobiology for studies of vesicles and membranes is discussed, as well as the different available techniques to probe their mechanical properties. In particular, the mechanics of vesicles and membranes as obtained by nanoindentation, micropipette aspiration, optical tweezers, electrodeformation and electroporation experiments is addressed. MAJOR CONCLUSIONS: EVs and liposomes possess an astonishing rich, diverse behavior. To better understand their properties, and for optimization of their applications in nanotechnology, an improved understanding of their mechanical properties is needed. Depending on the size of the vesicles and the specific scientific question, different techniques can be chosen for their mechanical characterization. GENERAL SIGNIFICANCE: Understanding the mechanical properties of vesicles is necessary to gain deeper insight in the fundamental biological mechanisms involved in vesicle generation and cellular uptake. This furthermore facilitates technological applications such as using vesicles as targeted drug delivery vehicles. Liposome studies provide insight into fundamental membrane processes and properties, whereas the role and functioning of EVs in biology and medicine are increasingly elucidated.


Subject(s)
Biomimetic Materials/chemistry , Cell Membrane/chemistry , Liposomes/chemistry , Animals , Biomechanical Phenomena , Biophysics , Electroporation , Humans , Microscopy, Atomic Force , Nanotechnology , Optical Imaging
14.
PeerJ ; 8: e9898, 2020.
Article in English | MEDLINE | ID: mdl-32999763

ABSTRACT

BACKGROUND: Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. METHODS: A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e. endemic status, threat status, availability in seed collections, reports on plant uses and conservation actions currently in place. With this information, a comprehensive catalogue of native trees from Mexico was redacted. Available georeferenced records were used to map each species distribution and perform spatial analyses to identify gaps of information and priority areas for their conservation and exploration. RESULTS: Mexico has at least 2,885 native tree species, belonging to 612 genera and 128 families. Fabaceae is the most represented family and Quercus the most represented genus. Approximately 44% of tree species are endemic to the country. The southern part of the country showed the highest values of species richness. Six hundred and seventy-four species have at least one documented human use. In terms of conservation assessment, ca. 33% of species have been assessed by either the IUCN Red List (919) or the National protection catalogue "NORMA Oficial Mexicana NOM-059" (29) or both (45). Additionally, 98 species have been included in the CITES listing for protection. In terms of existing conservation efforts, 19% of species have ex situ protection in seed banks, while protected areas overlap with all the identified peaks of species richness, except for those in the states of Veracruz and Chiapas. This work constitutes a key milestone for the knowledge, management, and conservation of the Mexican native trees. The two areas with high density of tree species identified in Veracruz and Chiapas represent two priority areas for tree conservation in Mexico, where integrated in situ and ex situ conservation efforts should be focused.

15.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32490512

ABSTRACT

The rhizosphere provides several benefits to the plant host being a strong determinant for its health, growth and productivity. Nonetheless, the factors behind the assembly of the microbial communities associated with the rhizosphere such as the role of plant genotypes are not completely understood. In this study, we tested the role that intraspecific genetic variation has in rhizospheric microbial community assemblages, using genetically distinct wild cotton populations as a model of study. We followed a common garden experiment including five wild cotton populations, controlling for plant genotypes, environmental conditions and soil microbial community inoculum, to test for microbial differences associated with genetic variation of the plant hosts. Microbial communities of the treatments were characterized by culture-independent 16S rRNA gene amplicon sequencing with Illumina MiSeq platform. We analyzed microbial community diversity (alpha and beta), and diversity structure of such communities, determined by co-occurrence networks. Results show that different plant genotypes select for different and specific microbial communities from a common inoculum. Although we found common amplicon sequence variants (ASVs) to all plant populations (235), we also found unique ASVs for different populations that could be related to potential functional role of such ASVs in the rhizosphere.


Subject(s)
Gossypium , Microbiota , Bacteria/genetics , Genotype , Mexico , Plant Roots , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil , Soil Microbiology
16.
Proc Natl Acad Sci U S A ; 117(26): 15006-15017, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32554497

ABSTRACT

Cytochrome bo3 ubiquinol oxidase is a transmembrane protein, which oxidizes ubiquinone and reduces oxygen, while pumping protons. Apart from its combination with F1Fo-ATPase to assemble a minimal ATP regeneration module, the utility of the proton pump can be extended to other applications in the context of synthetic cells such as transport, signaling, and control of enzymatic reactions. In parallel, polymers have been speculated to be phospholipid mimics with respect to their ability to self-assemble in compartments with increased stability. However, their usability as interfaces for complex membrane proteins has remained questionable. In the present work, we optimized a fusion/electroformation approach to reconstitute bo3 oxidase in giant unilamellar vesicles made of PDMS-g-PEO and/or phosphatidylcholine (PC). This enabled optical access, while microfluidic trapping allowed for online analysis of individual vesicles. The tight polymer membranes and the inward oriented enzyme caused 1 pH unit difference in 30 min, with an initial rate of 0.35 pH·min-1 To understand the interplay in these composite systems, we studied the relevant mechanical and rheological membrane properties. Remarkably, the proton permeability of polymer/lipid hybrids decreased after protein insertion, while the latter also led to a 20% increase of the polymer diffusion coefficient in polymersomes. In addition, PDMS-g-PEO increased the activity lifetime and the resistance to free radicals. These advantageous properties may open diverse applications, ranging from cell-free biotechnology to biomedicine. Furthermore, the presented study serves as a comprehensive road map for studying the interactions between membrane proteins and synthetic membranes, which will be fundamental for the successful engineering of such hybrid systems.


Subject(s)
Cell Membrane/enzymology , Cytochrome b Group/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Cell Membrane/chemistry , Cell Membrane/genetics , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Transport , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Phosphatidylcholines/metabolism , Polymers/chemistry , Protons
17.
Chem Phys Lipids ; 223: 104784, 2019 09.
Article in English | MEDLINE | ID: mdl-31199906

ABSTRACT

1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.


Subject(s)
Antifungal Agents/chemistry , Diphenylhexatriene/chemistry , Fluorescent Dyes/chemistry , Itraconazole/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Fluorescence Polarization , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Surface Properties
18.
PeerJ ; 7: e7017, 2019.
Article in English | MEDLINE | ID: mdl-31218120

ABSTRACT

One of the best ex situ conservation strategies for wild germplasm is in vitro conservation of genetic banks. The success of in vitro conservation relies heavily on the micropropagation or performance of the species of interest. In the context of global change, crop production challenges and climate change, we face a reality of intensified crop production strategies, including genetic engineering, which can negatively impact biodiversity conservation. However, the possible consequences of transgene presence for the in vitro performance of populations and its implications for biodiversity conservation are poorly documented. In this study we analyzed experimental evidence of the potential effects of transgene presence on the in vitro performance of Gossypium hirsutum L. populations, representing the Mexican genetic diversity of the species, and reflect on the implications of such presence for ex situ genetic conservation of the natural variation of the species. We followed an experimental in vitro performance approach, in which we included individuals from different wild cotton populations as well as individuals from domesticated populations, in order to differentiate the effects of domestication traits dragged into the wild germplasm pool via gene flow from the effects of transgene presence. We evaluated the in vitro performance of five traits related to plant establishment (N = 300): propagation rate, leaf production rate, height increase rate, microbial growth and root development. Then we conducted statistical tests (PERMANOVA, Wilcoxon post-hoc tests, and NMDS multivariate analyses) to evaluate the differences in the in vitro performance of the studied populations. Although direct causality of the transgenes to observed phenotypes requires strict control of genotypes, the overall results suggest detrimental consequences for the in vitro culture performance of wild cotton populations in the presence of transgenes. This provides experimental, statistically sound evidence to support the implementation of transgene screening of plants to reduce time and economic costs in in vitro establishment, thus contributing to the overarching goal of germplasm conservation for future adaptation.

19.
Chembiochem ; 20(20): 2604-2608, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31090995

ABSTRACT

Liposomes are used in synthetic biology as cell-like compartments and their microfluidic production through double emulsions allows for efficient encapsulation of various components. However, residual oil in the membrane remains a critical bottleneck for creating pristine phospholipid bilayers. It has been discovered that osmotically driven shrinking leads to detachment of the oil drop. Separation inside a microfluidic chip has been realized to automate the procedure, which allows for controlled continuous production of monodisperse liposomes.


Subject(s)
Lipid Bilayers/chemistry , Liposomes/chemistry , Phospholipids/chemistry , Artificial Cells/cytology , Artificial Cells/ultrastructure , Emulsions , Microfluidics , Synthetic Biology
20.
Adv Sci (Weinh) ; 6(4): 1801602, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30828532

ABSTRACT

Polymer-based nanoparticles have an increasing presence in research due to their attractive properties, such as flexible surface functionality design and the ability to scale up production. Poly(ionic liquid) (PIL) nanoparticles of size below 50 nm are very unique in terms of their high charge density and internal onion-like morphology. The interaction between PIL nanoparticles and giant unilamellar vesicles (GUVs) of various surface charge densities is investigated. GUVs represent a convenient model system as they mimic the size and curvature of plasma membranes, while simultaneously offering direct visualization of the membrane response under the microscope. Incubating PIL nanoparticles with GUVs results in poration of the lipid membrane in a concentration- and charge-dependent manner. A critical poration concentration of PILs is located and the interactions are found to be analogous to those of antimicrobial peptides. Microbial mimetic membranes are already affected at submicromolar PIL concentrations where contrast loss is observed due to sugar exchange across the membrane, while at high concentrations the collapse of vesicles is observed. Finally, a confocal microscopy-based approach assessing the particle permeation through the membrane is reported and a mechanism based on bilayer frustration and pore stabilization via particle integration in the membrane is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...