Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Syst Appl Microbiol ; 44(4): 126228, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34265499

ABSTRACT

The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.


Subject(s)
Bradyrhizobium , Lupinus , Phylogeny , Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Brazil , DNA, Bacterial/genetics , Forests , Lupinus/microbiology , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant , Sequence Analysis, DNA , Soil Microbiology , Symbiosis
2.
Syst Appl Microbiol ; 44(3): 126203, 2021 May.
Article in English | MEDLINE | ID: mdl-33857759

ABSTRACT

In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.


Subject(s)
Bradyrhizobium , Fabaceae , Forests , Grassland , Phylogeny , Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Brazil , DNA, Bacterial/genetics , Fabaceae/microbiology , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Rhizosphere , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Symbiosis
3.
Genet Mol Biol ; 39(1): 111-21, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27007904

ABSTRACT

In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop's needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait.

4.
J Econ Entomol ; 108(3): 880-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26470207

ABSTRACT

Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops.


Subject(s)
Bees/physiology , Brassica napus/physiology , Pollination , Animals , Brassica napus/growth & development , Brazil , Species Specificity
5.
Syst Appl Microbiol ; 38(5): 323-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25976031

ABSTRACT

Lupinus albescens is a leguminous plant that belongs to "New World" lupine species, which is native to southern Brazil. This Brazilian region is characterized by poor degraded soils with low organic matter and is designated as an arenized area. The symbiosis between Lupinus plants and nitrogen-fixing bacteria belonging to the Bradyrhizobium genus may help the plant establish itself in these areas. To characterize the bradyrhizobial population symbionts of L. albescens plants grown in arenized and non-arenized areas, a multilocus phylogenetic analysis allied to genetic diversity indices were conducted. Seventy-four bradyrhizobial isolates were analyzed, 38 coming from L. albescens plants growing in an arenized area and 36 from a non-arenized area. Isolates were different between arenized and non-arenized areas. Phylogenetic analysis of the 16S rRNA, dnaK, atpD, recA, glnII, rpoB, gyrB, nodA, nodB, and nodZ genes resulted in three supported clades, which were most likely to be three different new Bradyrhizobium species: one species from the arenized area and two from the non-arenized area. Estimates of genetic diversity, which decreased in arenized areas, were positively correlated with habitat variability. These results suggested that a few resistant and efficient Bradyrhizobium sp. strains were capable of forming nodules on L. albescens plants growing in an arenized area. An in vivo inoculation experiment with L. albescens plants showed that Bradyrhizobium ssp. isolated from this extreme environment were more efficient at promoting plant growth than those from the non-arenized area. This result suggested that the environment affected the selection of more efficient plant growth promoters in order to sustain plant growth.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/genetics , Lupinus/microbiology , Multilocus Sequence Typing , Bacterial Proteins/genetics , Bradyrhizobium/isolation & purification , Brazil , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...