Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Cell Biol ; 167: 81-98, 2022.
Article in English | MEDLINE | ID: mdl-35153000

ABSTRACT

This chapter describes the most common method for evaluating cytotoxicity of chimeric antigen receptor (CAR) T cells, the xCELLigence real-time cell analysis (RTCA) platform (Agilent Technologies, Inc., Santa Clara, CA). Though there are a variety of assays used to evaluate conventional and engineered T cell cytotoxicity, the benefit of the xCELLigence platform is the depth of real-time data collected. This chapter begins by providing information on the conceptual basis underlying the xCELLigence assay, followed by a detailed protocol for the application of this assay to evaluate your own CAR-T cells, as well as specific insight and helpful tips for assay design, usage, and data analysis. Application of the information and methods discussed within this chapter will provide a greater understanding for evaluating cytotoxicity of CAR-T cells using this in vitro model system.


Subject(s)
T-Lymphocytes, Cytotoxic , Cell Line, Tumor , Electric Impedance
2.
Expert Rev Precis Med Drug Dev ; 6(2): 117-129, 2021.
Article in English | MEDLINE | ID: mdl-34027103

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. AREAS COVERED: We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. EXPERT OPINION: The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...