Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 47(9): 4875-81, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23550777

ABSTRACT

In this study, we designed and constructed an experimental laboratory apparatus to measure the uptake of volatile organic compounds (VOCs) by soot particles. Results for the uptake of naphthalene (C10H8) by soot particles typical of those found in the exhaust of an aircraft engine are reported in this paper. The naphthalene concentration in the gas phase and naphthalene attached to the particles were measured simultaneously by a heated flame ionization detector (HFID) and a time-of-flight aerosol mass spectrometer (ToF AMS), respectively. The uptake coefficient for naphthalene on soot of (1.11 ± 0.06) × 10(-5) at 293 K was determined by fitting the HFID and AMS measurements of gaseous and particulate naphthalene to a kinetic model of uptake. When the gaseous concentration of naphthalene is kept below the saturation limit during these experiments, the uptake of naphthalene can be considered the dry mass accommodation coefficient.


Subject(s)
Naphthalenes/chemistry , Soot/chemistry , Kinetics , Models, Chemical , Particle Size
2.
Environ Sci Technol ; 46(17): 9630-7, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22870990

ABSTRACT

Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.


Subject(s)
Air Pollutants/analysis , Industrial Oils/analysis , Lubricants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Aircraft , Environmental Monitoring , Mass Spectrometry
3.
Environ Sci Technol ; 44(24): 9530-4, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21090602

ABSTRACT

In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.


Subject(s)
Air Pollutants/analysis , Aircraft , Lubricants/analysis , Oils/analysis , Vehicle Emissions/analysis , Aerosols/analysis , Atmosphere/chemistry , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...