Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 9: 834700, 2022.
Article in English | MEDLINE | ID: mdl-35463964

ABSTRACT

Human α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) stands at a branch point of the de novo NAD+ synthesis pathway and plays an important role in maintaining NAD+ homeostasis. It has been recently identified as a novel therapeutic target for a wide range of diseases, including inflammatory, metabolic disorders, and aging. So far, in absence of potent and selective enzyme inhibitors, only a crystal structure of the complex of human dimeric ACMSD with pseudo-substrate dipicolinic acid has been resolved. In this study, we report the crystal structure of the complex of human dimeric ACMSD with TES-1025, the first nanomolar inhibitor of this target, which shows a binding conformation different from the previously published predicted binding mode obtained by docking experiments. The inhibitor has a K i value of 0.85 ± 0.22 nM and binds in the catalytic site, interacting with the Zn2+ metal ion and with residues belonging to both chains of the dimer. The results provide new structural information about the mechanism of inhibition exerted by a novel class of compounds on the ACMSD enzyme, a novel therapeutic target for liver and kidney diseases.

2.
Bioorg Med Chem ; 28(22): 115731, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007550

ABSTRACT

The medicinal chemist toolbox is plenty of (bio)isosteres when looking for a carboxylic acid replacement. However, systematic assessment of acid surrogates is often time consuming and expensive, while prediction of both physicochemical properties (logP and logD) as well as acidity would be desirable at early discovery stages for a better analog design. Herein in this work, to enable decision making on a project, we have synthesized by employing a Diversity-Oriented Synthetic (DOS) methodology, a small library of molecular fragments endowed with acidic properties. By combining in-silico and experimental methodologies these compounds were chemically characterized and, particularly, with the aim to know their physicochemical properties, the aqueous ionization constants (pKa), partition coefficients logD and logP of each fragment was firstly estimated by using molecular modeling studies and then validated by experimental determinations. A face to face comparison between data and the corresponding carboxylic acid might help medicinal chemists in finding the best replacement to be used. Finally, in the framework of Fragment Based Drug Design (FBDD) the small library of fragments obtained with our approach showed good versatility both in synthetic and physico-chemical properties.


Subject(s)
Carboxylic Acids/chemical synthesis , Drug Design , Carboxylic Acids/chemistry , Databases, Factual , Models, Molecular , Molecular Structure
3.
Nature ; 563(7731): 354-359, 2018 11.
Article in English | MEDLINE | ID: mdl-30356218

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits spontaneous cyclization of α-amino-ß-carboxymuconate-ε-semialdehyde in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionarily conserved mechanism in Caenorhabditis elegans and mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and sirtuin 1 activity, ultimately enhancing mitochondrial function. We also characterize two potent and selective inhibitors of ACMSD. Because expression of ACMSD is largely restricted to kidney and liver, these inhibitors may have therapeutic potential for protection of these tissues from injury. In summary, we identify ACMSD as a key modulator of cellular NAD+ levels, sirtuin activity and mitochondrial homeostasis in kidney and liver.


Subject(s)
Carboxy-Lyases/metabolism , Conserved Sequence , Evolution, Molecular , Health , Mitochondria/physiology , NAD/biosynthesis , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/chemistry , Carboxy-Lyases/deficiency , Cell Line , Choline , Disease Models, Animal , Female , Gene Knockdown Techniques , Hepatocytes/cytology , Hepatocytes/drug effects , Homeostasis/drug effects , Humans , Kidney/cytology , Kidney/drug effects , Liver/cytology , Liver/drug effects , Longevity/drug effects , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/physiopathology , Non-alcoholic Fatty Liver Disease/prevention & control , Rats , Sirtuins/metabolism
4.
J Med Chem ; 61(3): 745-759, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29345930

ABSTRACT

NAD+ has a central function in linking cellular metabolism to major cell-signaling and gene-regulation pathways. Defects in NAD+ homeostasis underpin a wide range of diseases, including cancer, metabolic disorders, and aging. Although the beneficial effects of boosting NAD+ on mitochondrial fitness, metabolism, and lifespan are well established, to date, no therapeutic enhancers of de novo NAD+ biosynthesis have been reported. Herein we report the discovery of 3-[[[5-cyano-1,6-dihydro-6-oxo-4-(2-thienyl)-2-pyrimidinyl]thio]methyl]phenylacetic acid (TES-1025, 22), the first potent and selective inhibitor of human ACMSD (IC50 = 0.013 µM) that increases NAD+ levels in cellular systems. The results of physicochemical-property, ADME, and safety profiling, coupled with in vivo target-engagement studies, support the hypothesis that ACMSD inhibition increases de novo NAD+ biosynthesis and position 22 as a first-class molecule for the evaluation of the therapeutic potential of ACMSD inhibition in treating disorders with perturbed NAD+ supply or homeostasis.


Subject(s)
Carboxy-Lyases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , NAD/biosynthesis , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Enzyme Inhibitors/metabolism , Humans , Molecular Docking Simulation , Phenylacetates/metabolism , Phenylacetates/pharmacology , Protein Conformation
5.
Eur J Med Chem ; 142: 506-522, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29107427

ABSTRACT

Recent years have seen substantially heightened interest in the discovery of tankyrase inhibitors (TNKSi) as new promising anticancer agents. In this framework, the aim of this review article is focused on the description of potent TNKSi also endowed with disruptor activity toward the Wnt/ß-catenin signaling pathway. Beginning with an overview of the most characterized TNKSi deriving from several drug design approaches and classifying them on the basis of the molecular interactions with the target, we discuss only those ones acting against Wnt cancer cell lines. In addition, comprehensive structure property relationships (SPR) emerging from the hit evolution processes and preclinical results are provided. We then review the most promising TNKSi hitherto reported in literature, acting in vivo models of Wnt-driven cancers. Some outlooks on current issues and future directions in this field are also discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery , Neoplasms/drug therapy , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , Animals , Antineoplastic Agents/therapeutic use , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Molecular Targeted Therapy/methods , Neoplasms/metabolism , Tankyrases/metabolism
6.
ChemMedChem ; 11(12): 1219-26, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-26424664

ABSTRACT

Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.


Subject(s)
Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Polypharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Binding Sites , Female , Humans , Molecular Dynamics Simulation , Ovarian Neoplasms/drug therapy , Phthalazines/chemistry , Phthalazines/metabolism , Phthalazines/therapeutic use , Piperazines/chemistry , Piperazines/metabolism , Piperazines/therapeutic use , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinases/chemistry , Protein Kinases/metabolism
7.
Eur J Med Chem ; 87: 611-23, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25299683

ABSTRACT

A virtual screening procedure was applied to identify new tankyrase inhibitors. Through pharmacophore screening of a compounds collection from the SPECS database, the methoxy[l]benzothieno[2,3-c]quinolin-6(5H)-one scaffold was identified as nicotinamide mimetic able to inhibit tankyrase activity at low micromolar concentration. In order to improve potency and selectivity, tandem structure-based and scaffold hopping approaches were carried out over the new scaffold leading to the discovery of the 2-(phenyl)-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one as powerful chemotype suitable for tankyrase inhibition. The best compound 2-(4-tert-butyl-phenyl)-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one (23) displayed nanomolar potencies (IC50s TNKS-1 = 21 nM and TNKS-2 = 29 nM) and high selectivity when profiled against several other PARPs. Furthermore, a striking Wnt signaling, as well as cell growth inhibition, was observed assaying 23 in DLD-1 cancer cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrometry, Mass, Electrospray Ionization
8.
Biochim Biophys Acta ; 1844(10): 1765-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25062913

ABSTRACT

The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

9.
J Med Chem ; 57(6): 2807-12, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24527792

ABSTRACT

Searching for selective tankyrases (TNKSs) inhibitors, a new small series of 6,8-disubstituted triazolo[4,3-b]piridazines has been synthesized and characterized biologically. Structure-based optimization of the starting hit compound NNL (3) prompted us to the discovery of 4-(2-(6-methyl-[1,2,4]triazolo[4,3-b]pyridazin-8-ylamino)ethyl)phenol (12), a low nanomolar selective TNKSs inhibitor working as NAD isostere as ascertained by crystallographic analysis. Preliminary biological data candidate this new class of derivatives as a powerful pharmacological tools in the unraveling of TNKS implications in physiopathological conditions.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Tankyrases/antagonists & inhibitors , Triazoles/chemical synthesis , Triazoles/pharmacology , Adenosine Diphosphate Ribose/metabolism , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Drug Design , Humans , Indicators and Reagents , Luciferases/genetics , Mass Spectrometry , Models, Molecular , Molecular Conformation , Recombinant Proteins/drug effects , Structure-Activity Relationship
10.
Curr Top Med Chem ; 13(23): 2939-54, 2013.
Article in English | MEDLINE | ID: mdl-24171773

ABSTRACT

Poly(ADP-ribose)polymerases (PARPs) catalyze a post-transcriptional modification of proteins, consisting in the attachment of mono, oligo or poly ADP-ribose units from NAD+ to specific polar residues of target proteins. The scientific interest in members of this superfamily of enzymes is continuously growing since they have been implicated in a range of diseases including stroke, cardiac ischemia, cancer, inflammation and diabetes. Despite some inhibitors of PARP-1, the founder member of the superfamily, have advanced in clinical trials for cancer therapy, and other members of PARPs have recently been proposed as interesting drug targets, challenges exist in understanding the polypharmacology of current PARP inhibitors as well as developing highly selective chemical tools to unravel specific functions of each member of the superfamily. Beginning with an overview on the molecular aspects that affect polypharmacology, in this article we discuss how these may have an impact on PARP research and drug discovery. Then, we review the most selective PARP inhibitors hitherto reported in literature, giving an update on the molecular aspects at the basis of selective PARP inhibitor design. Finally, some outlooks on current issues and future directions in this field of research are also provided.


Subject(s)
Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors , Polypharmacology , Animals , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Poly(ADP-ribose) Polymerases/metabolism , Substrate Specificity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...