Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(744): eadd8273, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657023

ABSTRACT

Rotator cuff injuries result in more than 500,000 surgeries annually in the United States, many of which fail. These surgeries typically involve repair of the injured tendon and removal of the subacromial bursa, a synovial-like tissue that sits between the rotator cuff and the acromion. The subacromial bursa has been implicated in rotator cuff pathogenesis and healing. Using proteomic profiling of bursa samples from nine patients with rotator cuff injury, we show that the bursa responds to injury in the underlying tendon. In a rat model of supraspinatus tenotomy, we evaluated the bursa's effect on the injured supraspinatus tendon, the uninjured infraspinatus tendon, and the underlying humeral head. The bursa protected the intact infraspinatus tendon adjacent to the injured supraspinatus tendon by maintaining its mechanical properties and protected the underlying humeral head by maintaining bone morphometry. The bursa promoted an inflammatory response in injured rat tendon, initiating expression of genes associated with wound healing, including Cox2 and Il6. These results were confirmed in rat bursa organ cultures. To evaluate the potential of the bursa as a therapeutic target, polymer microspheres loaded with dexamethasone were delivered to the intact bursae of rats after tenotomy. Dexamethasone released from the bursa reduced Il1b expression in injured rat supraspinatus tendon, suggesting that the bursa could be used for drug delivery to reduce inflammation in the healing tendon. Our findings indicate that the subacromial bursa contributes to healing in underlying tissues of the shoulder joint, suggesting that its removal during rotator cuff surgery should be reconsidered.


Subject(s)
Bursa, Synovial , Rats, Sprague-Dawley , Rotator Cuff Injuries , Rotator Cuff , Tendons , Wound Healing , Animals , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/surgery , Humans , Bursa, Synovial/pathology , Bursa, Synovial/metabolism , Tendons/pathology , Tendons/metabolism , Male , Rotator Cuff/pathology , Rats , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Female
2.
FASEB J ; 38(1): e23364, 2024 01.
Article in English | MEDLINE | ID: mdl-38091247

ABSTRACT

Degeneration of the intervertebral disc (IVD) results in a range of symptomatic (i.e., painful) and asymptomatic experiences. Components of the degenerative environment, including structural disruption and inflammatory cytokine production, often correlate with pain severity. However, the role of inflammation in the activation of pain and degenerative changes has been complex to delineate. The most common IVD injury model is puncture; however, it initiates structural damage that is not representative of the natural degenerative cascade. In this study, we utilized in vivo injection of lipopolysaccharide (LPS), a pro-inflammatory stimulus, into rat caudal IVDs using 33G needles to induce inflammatory activation without the physical tissue disruption caused by puncture using larger needles. LPS injection increased gene expression of pro-inflammatory cytokines (Tnfa, Il1b) and macrophage markers (Inos, Arg1), supported by immunostaining of macrophages (CD68, CCR7, Arg1) and systemic changes in blood cytokine and chemokine levels. Disruption of the IVD structural integrity after LPS injection was also evident through changes in histological grading, disc height, and ECM biochemistry. Ultimately, intradiscal inflammatory stimulation led to local mechanical hyperalgesia, demonstrating that pain can be initiated by inflammatory stimulation of the IVD. Gene expression of nociceptive markers (Ngf, Bdnf, Cgrp) and immunostaining for neuron ingrowth (PGP9.5) and sensitization (CGRP) in the IVD were also shown, suggesting a mechanism for the pain exhibited. To our knowledge, this rat IVD injury model is the first to demonstrate local pain behavior resulting from inflammatory stimulation of caudal IVDs. Future studies will examine the mechanistic contributions of inflammation in mediating pain.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Rats , Animals , Intervertebral Disc Degeneration/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Calcitonin Gene-Related Peptide/metabolism , Spinal Puncture , Intervertebral Disc/metabolism , Pain/etiology , Pain/metabolism , Cytokines/metabolism , Inflammation/metabolism
3.
JOR Spine ; 6(4): e1299, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156061

ABSTRACT

Background: Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP) worldwide. Sexual dimorphism, or sex-based differences, appear to exist in the severity of LBP. However, it is unknown if there are sex-based differences in the inflammatory, biomechanical, biochemical, and histological responses of intervertebral discs (IVDs). Methods: Caudal (Coccygeal/Co) bone-disc-bone motion segments were isolated from multiple spinal levels (Co8 to Co14) of male and female Sprague-Dawley rats. Changes in motion segment biomechanics and extracellular matrix (ECM) biochemistry (glycosaminoglycan [GAG], collagen [COL], water, and DNA content) were evaluated at baseline and in response to chemical insult (lipopolysaccharide [LPS]) or puncture injury ex vivo. We also investigated the contributions of Toll-like receptor (TLR4) signaling on responses to LPS or puncture injury ex vivo, using a small molecule TLR4 inhibitor, TAK-242. Results: Findings indicate that IVD motion segments from female donors had greater nitric oxide (NO) release in LPS groups compared to male donors. HMGB1 release was increased in punctured discs, but not LPS injured discs, with no sex effect. Although both male and female discs exhibited reductions in dynamic moduli in response to LPS and puncture injuries, dynamic moduli from female donors were higher than male donors across all groups. In uninjured (baseline) samples, a significant sex effect was observed in nucleus pulposus (NP) DNA and water content. Female annulus fibrosus (AF) also had higher DNA, GAG, and COL content (normalized by dry weight), but lower water content than male AF. Additional injury- and sex-dependent effects were observed in AF GAG/DNA and COL/DNA content. Finally, TAK-242 improved the dynamic modulus of female but not male punctured discs. Conclusions: Our findings demonstrate that there are differences in rat IVD motion segments based on sex, and that the response to injury in inflammatory, biomechanical, biochemical, and histological outcomes also exhibit sex differences. TLR4 inhibition protected against loss of mechanical integrity of puncture-injured IVD motion segments, with differences responses based on donor sex.

4.
JOR Spine ; 6(3): e1260, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37780823

ABSTRACT

Multi-joint disease pathologies in the lumbar spine, including ligamentum flavum (LF) hypertrophy and intervertebral disc (IVD) bulging or herniation contribute to lumbar spinal stenosis (LSS), a highly prevalent condition characterized by symptomatic narrowing of the spinal canal. Clinical hypertrophic LF is characterized by a loss of elastic fibers and increase in collagen fibers, resulting in fibrotic thickening and scar formation. In this study, we created an injury model to test the hypothesis that LF needle scrape injury in the rat will result in hypertrophy of the LF characterized by altered tissue geometry, matrix organization, composition and inflammation. An initial pilot study was conducted to evaluate effect of needle size. Results indicate that LF needle scrape injury using a 22G needle produced upregulation of the pro-inflammatory cytokine Il6 at 1 week post injury, and increased expression of Ctgf and Tgfb1 at 8 weeks post injury, along with persistent presence of infiltrating macrophages at 1, 3, and 8 weeks post injury. LF integrity was also altered, evidenced by increases in LF tissue thickness and loss of elastic tissue by 8 weeks post injury. Persistent LF injury also produced multi-joint effects in the lumbar IVD, including disc height loss at the injury and adjacent to injury level, with degenerative IVD changes observed in the adjacent level. These results demonstrate that LF scrape injury in the rat produces structural and molecular features of LF hypertrophy and IVD height and histological changes, dependent on level. This model may be useful for testing of therapeutic interventions for treatment of LSS and IVD degeneration associated with LF hypertrophy.

SELECTION OF CITATIONS
SEARCH DETAIL
...