Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Leukemia ; 27(5): 1019-27, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23228943

ABSTRACT

The serine/threonine kinase AMP-activated protein kinase (AMPK) and its downstream effectors, including endothelial nitric oxide synthase and BCL-2, are hyperactivated in B-cell precursor-acute lymphoblastic leukemia (BCP-ALL) cells with MLL gene rearrangements. We investigated the role of activated AMPK in supporting leukemic cell survival and evaluated AMPK as a potential drug target. Exposure of leukemic cells to the commercial AMPK inhibitor compound C resulted in massive apoptosis only in cells with MLL gene rearrangements. These results were confirmed by targeting AMPK with specific short hairpin RNAs. Compound C-induced apoptosis was associated with mitochondrial membrane depolarization, reactive oxygen species production, cytochrome c release and caspases cleavage, indicating intrinsic apoptosis pathway activation. Treatment with low concentrations of compound C resulted in a strong antileukemic activity, together with cytochrome c release and cleavage of caspases and poly(ADP-ribose) polymerase, also in MLL-rearranged primary BCP-ALL samples. Moreover, AMPK inhibition in MLL-rearranged cell lines synergistically enhanced the antiproliferative effects of vincristine, daunorubicin, cytarabine, dexamethasone and L-asparaginase in most of the evaluated conditions. Taken together, these results indicate that the activation of the AMPK pathway directly contributes to the survival of MLL-rearranged BCP-ALL cells and AMPK inhibitors could represent a new therapeutic strategy for this high-risk leukemia.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Apoptosis/drug effects , Myeloid-Lymphoid Leukemia Protein/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , AMP-Activated Protein Kinases/physiology , Cell Cycle/drug effects , Cell Line, Tumor , Gene Rearrangement , Histone-Lysine N-Methyltransferase , Humans , Mitochondria/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
3.
Biochem Soc Trans ; 34(Pt 4): 495-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16856842

ABSTRACT

It is becoming increasingly evident that the freely diffusible second messenger cAMP can transduce specific responses by localized signalling. The machinery that underpins compartmentalized cAMP signalling is only now becoming appreciated. Adenylate cyclases, the enzymes that synthesize cAMP, are localized at discrete parts of the plasma membrane, and phosphodiesterases, the enzymes that degrade cAMP, can be targeted to selected subcellular compartments. A-kinase-anchoring proteins then serve to anchor PKA (protein kinase A) close to specific targets, resulting in selective activation. The specific activation of such individual subsets of PKA requires that cAMP is made available in discrete compartments. In this presentation, the molecular and structural mechanisms responsible for compartmentalized PKA signalling and restricted diffusion of cAMP will be discussed.


Subject(s)
Cyclic AMP/metabolism , Second Messenger Systems , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Diffusion
4.
Biochem Soc Trans ; 33(Pt 6): 1323-6, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16246109

ABSTRACT

In recent years, the development of new technologies based on the green fluorescent protein and FRET (fluorescence resonance energy transfer) has introduced a new perspective in the study of cAMP signalling. Real-time imaging of fluorescent biosensors is making it possible to visualize cAMP dynamics directly as they happen in intact, living cells, providing important and original insights for our understanding of the spatiotemporal organization of the cAMP/PKA (protein kinase A) signalling pathway.


Subject(s)
Cyclic AMP/metabolism , Green Fluorescent Proteins/metabolism , Second Messenger Systems/physiology , Animals , Biosensing Techniques , Cell Compartmentation , Cyclic AMP-Dependent Protein Kinases/metabolism , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/genetics , Microscopy, Fluorescence/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL