Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37154286

ABSTRACT

In the simulation of x-ray absorption spectroscopy, the validity of the electric-dipole approximation comes into question. Three different schemes exist to go beyond this approximation: the first scheme is based on the full semi-classical light-matter interaction, whereas the latter two schemes, referred to as the generalized length and velocity representation, are based on truncated multipole expansions. Even though these schemes have been successfully implemented in several quantum chemistry codes, their basis set requirements remained largely unknown. Here, we assess basis set requirements of these three schemes. We have considered 1s1/2 and 7s1/2 → 7p1/2 transitions in the radium atom, representative of core and valence excitations, respectively, and carried out calculations with dyall.aeXz (X = 2, 3, 4) basis sets at the four-component relativistic TD-HF level of theory. Our basis set study was greatly facilitated by the generation and visualization of radial distributions of transition moment densities, allowing for a straightforward comparison with equivalent finite-difference calculations. Pertaining to the truncated interaction, we find that the length representation electric multipole is the easiest to converge, requiring the dyall.ae2z basis for low-order multipoles and the dyall.ae4z basis at higher orders. The magnetic multipole moments follow a similar trend although they are more difficult to converge. The velocity representation electric multipoles are the most difficult to converge: at high orders, the dyall.ae3z and dyall.ae4z basis sets introduce artificial peaks and oscillations, which increase the overall error. These artifacts are associated with linear dependence issues in the small component space of larger basis sets. The full interaction operator, however, does not suffer from these problems, and we therefore recommend its use in the simulation of x-ray spectroscopy.

2.
J Chem Phys ; 156(5): 054113, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35135283

ABSTRACT

We present a formulation and implementation of anisotropic and isotropic electronic circular dichroism (ECD) using the full semi-classical light-matter interaction operator within a four-component relativistic framework. Our treatment uniquely accounts for both beyond-first-order light-matter interactions and relativistic effects, enabling us to investigate the ECD response across the electromagnetic spectrum from optical to x-ray wavelengths where relativistic selection rules and spatial field variations gain increasing importance. We consider the isotropic and oriented ECD across the valence transition and sulfur L- and K-edge transitions in the simplest disulfides, H2S2 and (CH3S)2, and evaluate the influence of the full interaction by comparing to a traditional truncated formulation in the Coulomb gauge (velocity representation). Additionally, we demonstrate that in the relativistic formalism, it is possible to work in the velocity representation, hence keeping order-by-order gauge-origin invariance, contrary to the multipolar gauge, yet being able to distinguish electric and magnetic multipole contributions. Going beyond a first-order treatment in the wave vector is mandatory in the higher-energy end of the soft x-ray region and beyond where the consequent intensity redistribution becomes significant. While the sulfur K-edge absorption spectrum is essentially unaffected by this redistribution, the signed differential counterpart is not: At least third-order contributions are required to describe the differential absorption profile that is otherwise overestimated by a factor of about two. The first-order description deteriorates at higher transition energies (beyond ∼1000 eV) where it may even fail to predict the sign of individual differential oscillator strengths.

3.
J Chem Theory Comput ; 17(11): 7120-7133, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34623139

ABSTRACT

Time-resolved near-edge X-ray absorption fine structure (TR-NEXAFS) spectroscopy is a powerful technique for studying photochemical reaction dynamics with femtosecond time resolution. In order to avoid ambiguity in TR-NEXAFS spectra from nonadiabatic dynamics simulations, core- and valence-excited states must be evaluated on equal footing and those valence states must also define the potential energy surfaces used in the nonadiabatic dynamics simulation. In this work, we demonstrate that hole-hole Tamm-Dancoff-approximated density functional theory (hh-TDA) is capable of directly simulating TR-NEXAFS spectroscopies. We apply hh-TDA to the excited-state dynamics of acrolein. We identify two pre-edge features in the oxygen K-edge TR-NEXAFS spectrum associated with the S2 (ππ*) and S1 (nπ*) excited states. We show that these features can be used to follow the internal conversion dynamics between the lowest three electronic states of acrolein. Due to the low, O(N2) apparent computational complexity of hh-TDA and our GPU-accelerated implementation, this method is promising for the simulation of pre-edge features in TR-NEXAFS spectra of large molecules and molecules in the condensed phase.

4.
J Chem Theory Comput ; 17(6): 3599-3617, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34009969

ABSTRACT

We present a fully analytic approach to calculate infrared (IR) and Raman spectra of molecules embedded in complex molecular environments modeled using the fragment-based polarizable embedding (PE) model. We provide the theory for the calculation of analytic second-order geometric derivatives of molecular energies and first-order geometric derivatives of electric dipole moments and dipole-dipole polarizabilities within the PE model. The derivatives are implemented using a general open-ended response theory framework, thus allowing for an extension to higher-order derivatives. The embedding-potential parameters used to describe the environment in the PE model are derived through first-principles calculations, thus allowing a wide variety of systems to be modeled, including solvents, proteins, and other large and complex molecular environments. Here, we present proof-of-principle calculations of IR and Raman spectra of acetone in different solvents. This work is an important step toward calculating accurate vibrational spectra of molecules embedded in realistic environments.

5.
J Chem Phys ; 152(18): 184110, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32414251

ABSTRACT

We present three schemes to go beyond the electric-dipole approximation in x-ray absorption spectroscopy calculations within a four-component relativistic framework. The first is based on the full semi-classical light-matter interaction operator and the two others on a truncated interaction within the Coulomb gauge (velocity representation) and multipolar gauge (length representation). We generalize the derivation of the multipolar gauge to an arbitrary expansion point and show that the potentials corresponding to different expansion points are related by a gauge transformation, provided that the expansion is not truncated. This suggests that the observed gauge-origin dependence in the multipolar gauge is more than just a finite-basis set effect. The simplicity of the relativistic formalism enables arbitrary-order implementations of the truncated interactions, with and without rotational averaging, allowing us to test their convergence behavior numerically by comparison to the full formulation. We confirm the observation that the oscillator strength of the electric-dipole allowed ligand K-edge transition of TiCl4, when calculated to the second order in the wave vector, becomes negative but also show that inclusion of higher-order contributions allows convergence to the result obtained using the full light-matter interaction. However, at higher energies, the slow convergence of such expansions becomes dramatic and renders such approaches at best impractical. When going beyond the electric-dipole approximation, we therefore recommend the use of the full light-matter interaction.

6.
J Chem Phys ; 146(23): 234101, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28641427

ABSTRACT

We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole structures as well as residues of the individual terms are discussed. In addition to providing a thorough justification for the descriptions used in polarizable embedding models, this theoretical analysis clarifies which form of the response function to use and highlights complications in separating out subsystem contributions to molecular properties. The basic features of the presented expressions and various approximate forms are illustrated by their application to a composite model system.

7.
J Comput Chem ; 38(9): 601-611, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28160294

ABSTRACT

A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-L-serine given their common use both in experimental and computational studies. The charges, and to a lesser extent the polarizabilities, are found to depend strongly on the molecular conformation of the lipids. Furthermore, the importance of explicit polarization is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural and dynamical studies. © 2017 Wiley Periodicals, Inc.


Subject(s)
Computational Biology , Lipid Bilayers/chemistry , Phospholipids/chemistry , Molecular Conformation , Molecular Dynamics Simulation , Optics and Photonics , Static Electricity
8.
J Chem Theory Comput ; 13(2): 719-726, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28042967

ABSTRACT

Computed optical properties of membrane probes are typically evaluated in the gas phase, i.e. neglecting the influence of the membrane. In this study, we examine how and to what extent a membrane influences the one- and two-photon absorption (1PA and 2PA, respectively) properties for a number of cholesterol analogs and thereby also evaluate the validity of the common gas phase approach. The membrane is modeled using the polarizable embedding scheme both with and without the effective external field extension of the polarizable embedding model. The shifts in excitation energies and 1PA oscillator strengths compared to the gas phase are relatively small, while the 2PA cross section is more affected. The electric field inside the membrane induces a larger change in the permanent electric dipole moment upon excitation of the analogs compared to the gas phase, which leads to an almost 2-fold increase in the 2PA cross section for one cholesterol analog. The relative trends observed in the membrane are the same as in the gas phase, and the use of gas phase calculations for qualitative comparison and design of cholesterol membrane probes is thus a useful and computationally efficient strategy.


Subject(s)
Cell Membrane/chemistry , Molecular Probes/chemistry , Optical Phenomena , Photons , Quantum Theory , Cell Membrane/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Molecular Conformation , Molecular Dynamics Simulation
9.
Phys Chem Chem Phys ; 18(40): 28339-28352, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27722558

ABSTRACT

We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions.


Subject(s)
Green Fluorescent Proteins/chemistry , Models, Chemical , Photons , Physical Phenomena , Solvents/chemistry
10.
Phys Chem Chem Phys ; 18(30): 20234-50, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27416749

ABSTRACT

In this perspective, we provide an overview of recent work within the polarizable embedding scheme to describe properties of molecules in realistic environments of increasing complexity. After an outline of the theoretical basis for the polarizable embedding model, we discuss the importance of using an accurate embedding potential, and how this may be used to significantly reduce the size of the part of the system treated using quantum mechanics without compromising the accuracy of the final results. Furthermore, we discuss the calculation of local electronic excited states based on response theory. We finally discuss aspects related to two recent extensions of the model (i) effective external field and (ii) polarizable density embedding emphasizing their importance for efficient yet accurate description of excited-state properties in complex environments.

11.
PLoS One ; 11(3): e0152345, 2016.
Article in English | MEDLINE | ID: mdl-27014869

ABSTRACT

The biophysical mechanism of the sense of smell, or olfaction, is still highly debated. The mainstream explanation argues for a shape-based recognition of odorant molecules by olfactory receptors, while recent investigations suggest the primary olfactory event to be triggered by a vibrationally-assisted electron transfer reaction. We consider this controversy by studying the influence of a receptor on the vibrational properties of an odorant in atomistic details as the coupling between electronic degrees of freedom of the receptor and the vibrations of the odorant is the key parameter of the vibrationally-assisted electron transfer. Through molecular dynamics simulations we elucidate the binding specificity of a receptor towards acetophenone odorant. The vibrational properties of acetophenone inside the receptor are then studied by the polarizable embedding density functional theory approach, allowing to quantify protein-odorant interactions. Finally, we judge whether the effects of the protein provide any indications towards the existing theories of olfaction.


Subject(s)
Odorants , Olfactory Receptor Neurons/metabolism , Smell/physiology , Vibration , Acetophenones/chemistry , Computer Simulation , Crystallography, X-Ray , Cysteine/chemistry , Electrons , Humans , Molecular Conformation , Molecular Dynamics Simulation , Opsins/chemistry , Pentanols/chemistry , Receptors, Odorant/metabolism , Spectrophotometry, Infrared , Tyrosine/chemistry
12.
Phys Chem Chem Phys ; 18(15): 10070-80, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27007060

ABSTRACT

In spectroscopies, the local field experienced by a molecule embedded in an environment will be different from the externally applied electromagnetic field, and this difference may significantly alter the response and transition properties of the molecule. The polarizable embedding (PE) model has previously been developed to model the local field contribution stemming from the direct molecule-environment coupling of the electromagnetic response properties of molecules in solution as well as in heterogeneous environments, such as proteins. Here we present an extension of this approach to address the additional effective external field effect, i.e., the manifestations of the environment polarization induced by the external field, which allows for the calculation of properties defined in terms of the external field. Within a response framework, we report calculations of the one- and two-photon absorption (1PA and 2PA, respectively) properties of PRODAN-methanol clusters as well as the fluorescent protein DsRed. Our results demonstrate the necessity of accounting for both the dynamical reaction field and effective external field contributions to the local field in order to reproduce full quantum chemical reference calculations. For the lowest π→π* transition in DsRed, inclusion of effective external field effects gives rise to a 1.9- and 3.5-fold reduction in the 1PA and 2PA cross-sections, respectively. The effective external field is, however, strongly influenced by the heterogeneity of the protein matrix, and the resulting effect can lead to either screening or enhancement depending on the nature of the transition under consideration.

13.
J Chem Theory Comput ; 12(4): 1684-95, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26938368

ABSTRACT

We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotropic polarizabilities averaged over a large number of geometries of solvent molecules. The use of averaged parameters reduces the computational cost to obtain the embedding potential, which can otherwise be a rate-limiting step in calculations involving large environments. The parameters are evaluated by analyzing the quality of the resulting molecular electrostatic potentials with respect to full QM potentials. We show that a combination of geometry-specific parameters for solvent molecules close to the QM region and averaged parameters for solvent molecules further away allows for efficient polarizable embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable.


Subject(s)
Solvents/chemistry , Computer Simulation , Models, Molecular , Molecular Conformation , Quantum Theory , Static Electricity , Thermodynamics
14.
J Chem Theory Comput ; 11(9): 4182-8, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26575913

ABSTRACT

We establish the relationships between the metric of charge transfer excitation (Δr) for the bright ππ* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull π-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), Δr is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through Δr; if ß âˆ¼ (Δr)(k), then roughly, δ(TPA) ∼ (Δr)(k+1). Second, a simple power relation between Δr and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull π-conjugated systems through the metric of charge transfer.


Subject(s)
Optical Phenomena , Polymers/chemistry , Quantum Theory , Molecular Structure , Photons
15.
J Chem Theory Comput ; 11(4): 1832-42, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-26574389

ABSTRACT

Quantum-mechanical embedding methods have in recent years gained significant interest and may now be applied to predict a wide range of molecular properties calculated at different levels of theory. To reach a high level of accuracy in embedding methods, both the electronic structure model of the active region and the embedding potential need to be of sufficiently high quality. In fact, failures in quantum mechanics/molecular mechanics (QM/MM)-based embedding methods have often been associated with the QM/MM methodology itself; however, in many cases the reason for such failures is due to the use of an inaccurate embedding potential. In this paper, we investigate in detail the quality of the electronic component of embedding potentials designed for calculations on protein biostructures. We show that very accurate explicitly polarizable embedding potentials may be efficiently designed using fragmentation strategies combined with single-fragment ab initio calculations. In fact, due to the self-interaction error in Kohn-Sham density functional theory (KS-DFT), use of large full-structure quantum-mechanical calculations based on conventional (hybrid) functionals leads to less accurate embedding potentials than fragment-based approaches. We also find that standard protein force fields yield poor embedding potentials, and it is therefore not advisable to use such force fields in general QM/MM-type calculations of molecular properties other than energies and structures.


Subject(s)
Proteins/chemistry , Dipeptides/chemistry , Molecular Dynamics Simulation , Protein Structure, Tertiary , Quantum Theory , Static Electricity
16.
J Chem Phys ; 142(24): 244111, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26133414

ABSTRACT

We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.


Subject(s)
Absorption, Radiation , Electromagnetic Fields , Models, Theoretical , Magnesium/chemistry , Metals, Alkaline Earth/chemistry , Models, Molecular , Molecular Conformation , Photons , Polyenes/chemistry , Quantum Theory
17.
J Chem Phys ; 142(3): 034119, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25612701

ABSTRACT

We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.


Subject(s)
Acetophenones/chemistry , Models, Molecular , Anisotropy , Computer Simulation , Dimethyl Sulfoxide/chemistry , Hydrogen Bonding , Molecular Structure , Quantum Theory , Solvents/chemistry , Static Electricity , Vibration , Water/chemistry
18.
J Phys Chem B ; 118(26): 7345-57, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24893063

ABSTRACT

Although dehydroergosterol (DHE) is one of the most commonly used cholesterol (CHOL) reporters, it has remained unclear why it performs well compared with most other CHOL analogues and what its possible limitations are. We present a comprehensive study of the properties of DHE using a combination of time-resolved fluorescence spectroscopy, quantum-mechanical electronic structure computations, and classical atomistic molecular dynamics simulations. We first establish that DHE mimics CHOL behavior, as previous studies have suggested, and then move on to elucidate and discuss the particular properties that render DHE so superior. We found that the main reason why DHE mimics CHOL so well is due to its ability to stand upright in a membrane in a manner that is almost identical to that of CHOL. The minor difference in how DHE and CHOL tilt with respect to membrane normal has only faint effects on structural membrane properties, and even the lateral pressure profiles of model membranes with CHOL or DHE are almost identical. These results suggest that the mechanical/elastic effects of DHE on the function of mechanically sensitive membrane proteins are not substantially different from those of CHOL. Our study highlights similar dynamical behavior of CHOL and DHE, which implies that DHE can mimic CHOL in processes with free energies close to the thermal energy.


Subject(s)
Cholesterol/analogs & derivatives , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Quantum Theory , Spectrometry, Fluorescence , Unilamellar Liposomes/chemistry , Water/chemistry
19.
J Chem Phys ; 140(22): 224103, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24929370

ABSTRACT

We present a unifying framework for linear response eigenvalue equations that encompasses both variational Hartree-Fock and Kohn-Sham density functional theory as well as non-variational coupled-cluster theory. The joint description is rooted in the so-called Hamiltonian structure of the response kernel matrices, whose properties permit an immediate identification of the well-known paired eigenvalue spectrum describing a molecule in the isolated state. Recognizing the Hamiltonian structure underlying the equations further enables a generalization to the case of a polarizable-embedded molecule treated in variational and, in particular, in non-variational theories.

20.
J Chem Phys ; 141(24): 244107, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25554133

ABSTRACT

We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works by confirming numerically the validity of the routinely invoked neglect of the J matrix contribution as well as motivating future use of the approximation that offers a reduction of the dimensionality of the eigenvalue problem. Preliminary applications to K-edge absorption of liquid water and aqueous acrolein are presented and highlight the importance of the environment that gives rise to transition-specific shifts.

SELECTION OF CITATIONS
SEARCH DETAIL
...