Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Nat Chem Biol ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904048

ABSTRACT

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.

2.
Biomedicines ; 11(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37760847

ABSTRACT

Resistance to protein tyrosine kinase inhibitors (TKIs) presents a significant challenge in therapeutic target development for cancers such as triple-negative breast cancer (TNBC), where conventional therapies are ineffective at combatting systemic disease. Due to increased expression, the receptor tyrosine kinases EGFR (epidermal growth factor receptor) and c-Met are potential targets for treatment. However, targeted anti-EGFR and anti-c-Met therapies have faced mixed results in clinical trials due to acquired resistance. We hypothesize that adaptive responses in regulatory kinase networks within the EGFR and c-Met signaling axes contribute to the development of acquired erlotinib and cabozantinib resistance. To test this, we developed two separate models for cabozantinib and erlotinib resistance using the MDA-MB-231 and MDA-MB-468 cell lines, respectively. We observed that erlotinib- or cabozantinib-resistant cell lines demonstrate enhanced cell proliferation, migration, invasion, and activation of EGFR or c-Met downstream signaling (respectively). Using a SILAC (Stable Isotope Labeling of Amino acids in Cell Culture)-labeled quantitative mass spectrometry proteomics approach, we assessed the effects of erlotinib or cabozantinib resistance on the phosphoproteome, proteome, and kinome. Using this integrated proteomics approach, we identified several potential kinase mediators of cabozantinib resistance and confirmed the contribution of AKT1 to erlotinib resistance in TNBC-resistant cell lines.

3.
Biochim Biophys Acta Gen Subj ; 1867(10): 130441, 2023 10.
Article in English | MEDLINE | ID: mdl-37543358

ABSTRACT

Dramatic advances in phosphoproteomics and the development of a selective chemical probe have presented new opportunities for revealing the cellular landscape of substrates for CSNK2 (formerly known as CK2 or casein kinase II). In addition to deciphering the role(s) of CSNK2 in physiology and pathophysiology, the CSNK2 phosphoproteome offers the promise of instructing the development of CSNK2-targeted therapy.


Subject(s)
COVID-19 , Humans , Pandemics , Casein Kinase II
4.
Front Mol Biosci ; 9: 909711, 2022.
Article in English | MEDLINE | ID: mdl-35755813

ABSTRACT

Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.

5.
Mol Biol Cell ; 33(3): ar24, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34985913

ABSTRACT

Pannexins (PANX) are a family of three channel-forming membrane glycoproteins expressed in the skin. Previous studies have focused on the role of PANX1 and PANX3 in the regulation of cellular functions in skin cells while PANX2, the largest member of this protein family, has not been investigated. In the current study, we explored the temporal PANX2 expression in murine skin and found that one Panx2 splice variant (Panx2-202) tends to be more abundant at the protein level and is continuously expressed in developed skin. PANX2 was detected in the suprabasal layers of the mouse epidermis and up-regulated in an in vitro model of rat epidermal keratinocyte differentiation. Furthermore, we show that in apoptotic rat keratinocytes, upon UV light B (UVB)-induced caspase-3/7 activation, ectopically overexpressed PANX2 is cleaved in its C-terminal domain at the D416 residue without increasing the apoptotic rate measured by caspase-3/7 activation. Notably, CRISPR-Cas9 mediated genetic deletion of rat Panx2 delays but does not impair caspase-3/7 activation and cytotoxicity in UVB-irradiated keratinocytes. We propose that endogenous PANX2 expression in keratinocytes promotes cell death after UVB insult and may contribute to skin homeostasis.


Subject(s)
Connexins/metabolism , Nerve Tissue Proteins , Animals , Apoptosis , Keratinocytes/metabolism , Mice , Nerve Tissue Proteins/metabolism , Protein Processing, Post-Translational , Rats , Ultraviolet Rays
6.
Br J Cancer ; 126(7): 994-1003, 2022 04.
Article in English | MEDLINE | ID: mdl-34773100

ABSTRACT

Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase frequently dysregulated in solid and hematologic malignancies. To consolidate a wide range of biological and clinically oriented data from this unique kinase in cancer, this systematic review summarises existing knowledge from in vitro, in vivo and pre-clinical studies on CSNK2 across 24 different human cancer types. CSNK2 mRNA transcripts, protein levels and activity were found to be routinely upregulated in cancer, and commonly identified phosphotargets included AKT, STAT3, RELA, PTEN and TP53. Phenotypically, it frequently influenced evasion of apoptosis, enhancement of proliferation, cell invasion/metastasis and cell cycle control. Clinically, it held prognostic significance across 14 different cancers, and its inhibition in xenograft experiments resulted in a positive treatment response in 12. In conjunction with commentary on preliminary studies of CSNK2 inhibitors in humans, this review harmonises an extensive body of CSNK2 data in cancer and reinforces its emergence as an attractive target for cancer therapy. Continuing to investigate CSNK2 will be crucial to advancing our understanding of CSNK2 biology, and offers the promise of important new discoveries scientifically and clinically.


Subject(s)
Casein Kinase II , Neoplasms , Apoptosis/genetics , Cell Cycle Checkpoints , Cell Proliferation/genetics , Humans , Neoplasms/drug therapy
7.
Biomedicines ; 9(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34680478

ABSTRACT

The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer's and Parkinson's diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.

9.
Cell Chem Biol ; 28(4): 546-558.e10, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33484635

ABSTRACT

Building on the pyrazolopyrimidine CK2 (casein kinase 2) inhibitor scaffold, we designed a small targeted library. Through comprehensive evaluation of inhibitor selectivity, we identified inhibitor 24 (SGC-CK2-1) as a highly potent and cell-active CK2 chemical probe with exclusive selectivity for both human CK2 isoforms. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our chemical probe did not elicit a broad antiproliferative phenotype in >90% of >140 cell lines when tested in dose-response. While many publications have reported CK2 functions, CK2 biology is complex and an available high-quality chemical tool such as SGC-CK2-1 will be indispensable in deciphering the relationships between CK2 function and phenotypes.


Subject(s)
Casein Kinase II/antagonists & inhibitors , Drug Development , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Casein Kinase II/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
10.
Mol Biol Cell ; 32(5): 376-390, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33405952

ABSTRACT

Pannexin 1 (PANX1) is a glycoprotein that forms large pore channels capable of passing ions and metabolites such as ATP for cellular communication. PANX1 has been implicated in many diseases including breast cancer and melanoma, where inhibition or deletion of PANX1 reduced the tumorigenic and metastatic properties of the cancer cells. We interrogated the effect of single amino acid changes in various PANX1 domains using naturally occurring variants reported in cancer patient tumors. We found that a previously reported variant (Q5H) is present in cancer cells, but was not different from the wild type (Q5) in glycosylation, trafficking, or channel function and did not affect cellular properties. We discovered that the Q5H variant is in fact the highly conserved ancestral allele of PANX1 with 89% of humans carrying at least one Q5H allele. Another mutated form Y150F, found in a melanoma patient tumor, prevented phosphorylation at Y150 as well as complex N-glycosylation while increasing intracellular localization. Sarcoma (SRC) is the predicted kinase to phosphorylate the Y150 residue, and its phosphorylation is not likely to be constitutive, but rather dynamically regulated. The Y150 phosphorylation site is the first one reported to play a role in regulating posttranslational modifications and trafficking of PANX1, with potential consequences on its large-pore channel structure and function in melanoma cells.


Subject(s)
Connexins/genetics , Connexins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Connexins/physiology , Glycosylation , HEK293 Cells , Humans , Melanoma/genetics , Melanoma/metabolism , Mutation , Nerve Tissue Proteins/physiology , Phosphorylation , Protein Biosynthesis , Protein Processing, Post-Translational , Protein Transport/physiology
11.
Proc Natl Acad Sci U S A ; 115(30): E7081-E7090, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987005

ABSTRACT

The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.


Subject(s)
Adenine , DNA Adducts/metabolism , DNA Damage , Huntington Disease/drug therapy , Neurons/metabolism , Signal Transduction/drug effects , Adenine/analogs & derivatives , Adenine/pharmacokinetics , Adenine/pharmacology , Adenine Phosphoribosyltransferase/genetics , Adenine Phosphoribosyltransferase/metabolism , Animals , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Transformed , DNA Adducts/genetics , Disease Models, Animal , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Mice, Transgenic , Neurons/pathology , Phosphorylation/drug effects , Phosphorylation/genetics , Signal Transduction/genetics
12.
Autophagy ; 14(2): 311-335, 2018.
Article in English | MEDLINE | ID: mdl-29165030

ABSTRACT

In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2ß-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.


Subject(s)
Casein Kinase II/metabolism , Mitochondria, Muscle/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/enzymology , Mitophagy/physiology , Muscle, Skeletal/enzymology , Animals , Autophagy , Casein Kinase II/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Mitochondrial Precursor Protein Import Complex Proteins , Mitophagy/genetics , Models, Animal , Phosphorylation , Protein Transport , Signal Transduction
13.
Blood ; 130(25): 2774-2785, 2017 12 21.
Article in English | MEDLINE | ID: mdl-28928125

ABSTRACT

Platelets, anucleated megakaryocyte (MK)-derived cells, play a major role in hemostasis and arterial thrombosis. Although protein kinase casein kinase 2 (CK2) is readily detected in MKs and platelets, the impact of CK2-dependent signaling on MK/platelet (patho-)physiology has remained elusive. The present study explored the impact of the CK2 regulatory ß-subunit on platelet biogenesis and activation. MK/platelet-specific genetic deletion of CK2ß (ck2ß-/- ) in mice resulted in a significant macrothrombocytopenia and an increased extramedullar megakaryopoiesis with an enhanced proportion of premature platelets. Although platelet life span was only mildly affected, ck2ß-/- MK displayed an abnormal microtubule structure with a drastically increased fragmentation within bone marrow and a significantly reduced proplatelet formation in vivo. In ck2ß-/- platelets, tubulin polymerization was disrupted, resulting in an impaired thrombopoiesis and an abrogated inositol 1,4,5-triphosphate receptor-dependent intracellular calcium (Ca2+) release. Presumably due to a blunted increase in the concentration of cytosolic Ca2+, activation-dependent increases of α and dense-granule secretion and integrin αIIbß3 activation, and aggregation were abrogated in ck2ß-/- platelets. Accordingly, thrombus formation and stabilization under high arterial shear rates were significantly diminished, and thrombotic vascular occlusion in vivo was significantly blunted in ck2ß-/- mice, accompanied by a slight prolongation of bleeding time. Following transient middle cerebral artery occlusion, ck2ß-/- mice displayed significantly reduced cerebral infarct volumes, developed significantly less neurological deficits, and showed significantly better outcomes after ischemic stroke than ck2ßfl/fl mice. The present observations reveal CK2ß as a novel powerful regulator of thrombopoiesis, Ca2+-dependent platelet activation, and arterial thrombosis in vivo.


Subject(s)
Casein Kinase II/physiology , Peptide Fragments/physiology , Platelet Activation , Thrombopoiesis , Thrombosis/pathology , Animals , Blood Platelets , Calcium Signaling , Casein Kinase II/deficiency , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/ultrastructure , Mice , Mice, Knockout , Peptide Fragments/deficiency , Thrombosis/etiology , Thrombosis/metabolism
14.
PLoS One ; 12(5): e0177871, 2017.
Article in English | MEDLINE | ID: mdl-28520795

ABSTRACT

Baculoviral IAP repeat containing 6 (BIRC6) is a member of the inhibitors of apoptosis proteins (IAPs), a family of functionally and structurally related proteins that inhibit apoptosis. BIRC6 has been implicated in drug resistance in several different human cancers, however mechanisms regulating BIRC6 have not been extensively explored. Our phosphoproteomic analysis of an imatinib-resistant chronic myelogenous leukemia (CML) cell line (MYL-R) identified increased amounts of a BIRC6 peptide phosphorylated at S480, S482, and S486 compared to imatinib-sensitive CML cells (MYL). Thus we investigated the role of BIRC6 in mediating imatinib resistance and compared it to the well-characterized anti-apoptotic protein, Mcl-1. Both BIRC6 and Mcl-1 were elevated in MYL-R compared to MYL cells. Lentiviral shRNA knockdown of BIRC6 in MYL-R cells increased imatinib-stimulated caspase activation and resulted in a ~20-25-fold increase in imatinib sensitivity, without affecting Mcl-1. Treating MYL-R cells with CDK9 inhibitors decreased BIRC6 mRNA, but not BIRC6 protein levels. By contrast, while CDK9 inhibitors reduced Mcl-1 mRNA and protein, they did not affect imatinib sensitivity. Since the Src family kinase Lyn is highly expressed and active in MYL-R cells, we tested the effects of Lyn inhibition on BIRC6 and Mcl-1. RNAi-mediated knockdown or inhibition of Lyn (dasatinib/ponatinib) reduced BIRC6 protein stability and increased caspase activation. Inhibition of Lyn also increased formation of an N-terminal BIRC6 fragment in parallel with reduced amount of the BIRC6 phosphopeptide, suggesting that Lyn may regulate BIRC6 phosphorylation and stability. In summary, our data show that BIRC6 stability is dependent on Lyn, and that BIRC6 mediates imatinib sensitivity independently of Mcl-1 or CDK9. Hence, BIRC6 may be a novel target for the treatment of drug-resistant CML where Mcl-1 or CDK9 inhibitors have failed.


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis , Drug Resistance, Neoplasm/genetics , Imatinib Mesylate/toxicity , Inhibitor of Apoptosis Proteins/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , src-Family Kinases/genetics , src-Family Kinases/metabolism
15.
Pharmaceuticals (Basel) ; 10(1)2017 Mar 05.
Article in English | MEDLINE | ID: mdl-28273877

ABSTRACT

Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.

16.
J Biomater Appl ; 31(7): 1087-1096, 2017 02.
Article in English | MEDLINE | ID: mdl-28178901

ABSTRACT

Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.


Subject(s)
Biocompatible Materials/chemistry , Gelatin/chemistry , Nanocapsules/chemistry , Nanospheres/chemistry , Nanospheres/ultrastructure , Neoplasms, Experimental/chemistry , Surface Properties , Cell Line, Tumor , Humans , Materials Testing , Nanocapsules/administration & dosage , Nanocapsules/ultrastructure , Neoplasms, Experimental/pathology , Particle Size
17.
Nat Chem Biol ; 12(11): 959-966, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27642862

ABSTRACT

We present a new strategy for systematic identification of phosphotyrosine (pTyr) by affinity purification mass spectrometry (AP-MS) using a Src homology 2 (SH2)-domain-derived pTyr superbinder as the affinity reagent. The superbinder allows for markedly deeper coverage of the Tyr phosphoproteome than anti-pTyr antibodies when an optimal amount is used. We identified ∼20,000 distinct phosphotyrosyl peptides and >10,000 pTyr sites, of which 36% were 'novel', from nine human cell lines using the superbinder approach. Tyrosine kinases, SH2 domains and phosphotyrosine phosphatases were preferably phosphorylated, suggesting that the toolkit of kinase signaling is subject to intensive regulation by phosphorylation. Cell-type-specific global kinase activation patterns inferred from label-free quantitation of Tyr phosphorylation guided the design of experiments to inhibit cancer cell proliferation by blocking the highly activated tyrosine kinases. Therefore, the superbinder is a highly efficient and cost-effective alternative to conventional antibodies for systematic and quantitative characterization of the tyrosine phosphoproteome under normal or pathological conditions.


Subject(s)
Phosphotyrosine/metabolism , Proteomics , Cell Line, Tumor , Humans , Mass Spectrometry , Phosphorylation , Phosphotyrosine/chemistry , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/metabolism , src Homology Domains
18.
Clin Cancer Res ; 22(12): 2840-7, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27306791

ABSTRACT

Protein kinase CK2 (designated CSNK2) is a constitutively active protein kinase with a vast repertoire of putative substrates that has been implicated in several human cancers, including cancer of the breast, lung, colon, and prostate, as well as hematologic malignancies. On the basis of these observations, CSNK2 has emerged as a candidate for targeted therapy, with two CSNK2 inhibitors in ongoing clinical trials. CX-4945 is a bioavailable small-molecule ATP-competitive inhibitor targeting its active site, and CIGB-300 is a cell-permeable cyclic peptide that prevents phosphorylation of the E7 protein of HPV16 by CSNK2. In preclinical models, either of these inhibitors exhibit antitumor efficacy. Furthermore, in combinations with chemotherapeutics such as cisplatin or gemcitabine, either CX-4945 or CIGB-300 promote synergistic induction of apoptosis. While CSNK2 is a regulatory participant in many processes related to cancer, its potential to modulate caspase action may be particularly pertinent to its emergence as a therapeutic target. Because the substrate recognition motifs for CSNK2 and caspases are remarkably similar, CSNK2 can block the cleavage of many caspase substrates through the phosphorylation of sites adjacent to cleavage sites. Phosphoproteomic strategies have also revealed previously underappreciated roles for CSNK2 in the phosphorylation of several key constituents of DNA damage and DNA repair pathways. Going forward, applications of proteomic strategies to interrogate responses to CSNK2 inhibitors are expected to reveal signatures for CSNK2 inhibition and molecular insights to guide new strategies to interfere with its potential to inhibit caspase action or enhance the susceptibility of cancer cells to DNA damage. Clin Cancer Res; 22(12); 2840-7. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Naphthyridines/pharmacology , Neoplasms/drug therapy , Peptides, Cyclic/pharmacology , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/antagonists & inhibitors , Apoptosis/drug effects , Casein Kinase II/antagonists & inhibitors , Cell Line, Tumor , DNA Damage/genetics , DNA Repair/genetics , Humans , Neoplasms/pathology , Papillomavirus E7 Proteins/metabolism , Phenazines , Phosphorylation/drug effects
19.
Nat Commun ; 7: 11127, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27040916

ABSTRACT

Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2ß phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2ß mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2ß and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation.


Subject(s)
Casein Kinase II/physiology , Eukaryotic Initiation Factor-4F/metabolism , Multiprotein Complexes/physiology , TOR Serine-Threonine Kinases/physiology , Ternary Complex Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Casein Kinase II/genetics , Casein Kinase II/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/physiology , Gene Expression Regulation , HEK293 Cells , Humans , MCF-7 Cells , Mechanistic Target of Rapamycin Complex 1 , Models, Genetic , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Oncogene Proteins/metabolism , Peptide Chain Initiation, Translational , Phosphorylation , Signal Transduction , Stress, Physiological , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
20.
Mol Biol Cell ; 27(2): 277-94, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26564797

ABSTRACT

Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22ß), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22ß(-/-) Sertoli cells moved faster than wild-type cells. In addition, GAR22ß(-/-) cells showed a more prominent focal adhesion turnover. GAR22ß overexpression or its reexpression in GAR22ß(-/-) cells reduced cell motility and focal adhesion turnover. GAR22ß-actin interaction was stronger than GAR22ß-microtubule interaction, resulting in GAR22ß localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22ß interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22ß-EB1 interaction was required for the ability of GAR22ß to modulate cell motility. We found that GAR22ß is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22ß as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes.


Subject(s)
Cell Movement/physiology , Microfilament Proteins/metabolism , Sperm Motility/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Axoneme/metabolism , Axoneme/physiology , Cell Adhesion/physiology , Cytoskeleton/metabolism , Focal Adhesions/metabolism , Male , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , NIH 3T3 Cells , Protein Structure, Tertiary , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...