Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nature ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589574

ABSTRACT

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).

2.
Cancer Cell ; 42(3): 330-332, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471455

ABSTRACT

The histologic transformation of adenocarcinoma (ADC) to squamous cell carcinoma (SCC), known as adeno-squamous transition or AST, is frequently observed in patients with lung cancer undergoing cancer therapy. In this issue, Tong and colleagues investigate genetic and epigenetic mechanisms that drive AST to confer resistance to KRAS inhibitors in preclinical models and patients.


Subject(s)
Adenocarcinoma , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Proto-Oncogene Proteins p21(ras) , Lung Neoplasms/genetics , Adenocarcinoma/pathology , Carcinoma, Squamous Cell/drug therapy
3.
Future Oncol ; 20(3): 113-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010044

ABSTRACT

WHAT IS THIS SUMMARY ABOUT?: This is a plain language summary of a study called CodeBreaK 100. The CodeBreaK 100 study included patients with non-small-cell lung cancer that had spread outside the lung (advanced). Lung cancer is one of the most common forms of cancer. CodeBreaK 100 specifically looked at patients with a particular change(mutation) in the KRAS gene resulting in the mutated protein called KRAS G12C. The KRAS G12C mutation can lead to development and growth of lung cancer. Patients received a treatment called sotorasib, which has accelerated approval or full approval in over 50 countries for patients with non-small-cell lung cancer with the KRAS G12C mutation. The CodeBreaK 100 study looked at whether sotorasib is a safe and effective treatment for advanced non-small-cell lung cancer. Sotorasib is designed to specifically target and lock the mutated KRAS protein in the inactive state to treat non-small-cell lung cancer. WHAT WERE THE RESULTS?: In total, 174 adults were treated with sotorasib. Treatment-related side effects were seen in 70% of patients and were severe in 21% of patients. The most common side effects included diarrhea, increased liver enzymes, nausea and tiredness. 70 (41%) patients responded to sotorasib and 144 (84%) patients had tumors that either remained stable or shrunk in size. 29 (41%) patients who responded to sotorasib responded for over 12 months. After 2 years, 9 patients with a response remained on sotorasib; there were no notable increases in tumor size or development of new tumors over this time. There were 5patients who received sotorasib for more than 2 years and continued to respond. Long-term benefit was seen for some patients. Patients also benefitted from treatment when the tumor expressed different amounts of a protein called PD-L1.In total, 33% of patients were still alive after 2 years. WHAT DO THE RESULTS MEAN?: Results show the long-term benefit of sotorasib therapy for people with advanced KRAS G12C-mutated non-small-cell lung cancer. Clinical Trial Registration: NCT03600883 (CodeBreaK 100) (ClinicalTrials.gov).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Piperazines , Pyridines , Pyrimidines , Adult , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Language , Mutation
4.
Oncologist ; 28(11): 978-985, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37589215

ABSTRACT

BACKGROUND: Direct KRASG12C inhibitors are approved for patients with non-small cell lung cancers (NSCLC) in the second-line setting. The standard-of-care for initial treatment remains immune checkpoint inhibitors, commonly in combination with platinum-doublet chemotherapy (chemo-immunotherapy). Outcomes to chemo-immunotherapy in this subgroup have not been well described. Our goal was to define the clinical outcomes to chemo-immunotherapy in patients with NSCLC with KRASG12C mutations. PATIENTS AND METHODS: Through next-generation sequencing, we identified patients with advanced NSCLC with KRAS mutations treated with chemo-immunotherapy at 2 institutions. The primary objective was to determine outcomes and determinants of response to first-line chemo-immunotherapy among patients with KRASG12C by evaluating objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). We assessed the impact of coalterations in STK11/KEAP1 on outcomes. As an exploratory objective, we compared the outcomes to chemo-immunotherapy in KRASG12C versus non-G12C groups. RESULTS: One hundred and thirty eight patients with KRASG12C treated with first-line chemo-immunotherapy were included. ORR was 41% (95% confidence interval (CI), 32-41), median PFS was 6.8 months (95%CI, 5.5-10), and median OS was 15 months (95%CI, 11-28). In a multivariable model for PFS, older age (P = .042), squamous cell histology (P = .008), poor ECOG performance status (PS) (P < .001), and comutations in KEAP1 and STK11 (KEAP1MUT/STK11MUT) (P = .015) were associated with worse PFS. In a multivariable model for OS, poor ECOG PS (P = .004) and KEAP1MUT/STK11MUT (P = .009) were associated with worse OS. Patients with KRASG12C (N = 138) experienced similar outcomes to chemo-immunotherapy compared to patients with non-KRASG12C (N = 185) for both PFS (P = .2) and OS (P = .053). CONCLUSIONS: We define the outcomes to first-line chemo-immunotherapy in patients with KRASG12C, which provides a real-world benchmark for clinical trial design involving patients with KRASG12C mutations. Outcomes are poor in patients with specific molecular coalterations, highlighting the need to develop more effective frontline therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1 , Platinum , NF-E2-Related Factor 2 , Protein Serine-Threonine Kinases
5.
Science ; 381(6659): 794-799, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590355

ABSTRACT

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Subject(s)
Biological Products , Cyclophilin A , Immunophilins , Molecular Chaperones , Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Cysteine/chemistry , Cysteine/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Cyclophilin A/chemistry , Cyclophilin A/metabolism , Immunophilins/chemistry , Immunophilins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
6.
JCO Precis Oncol ; 7: e2300030, 2023 06.
Article in English | MEDLINE | ID: mdl-37384866

ABSTRACT

PURPOSE: With the recent approval of the KRAS G12C inhibitor sotorasib for patients with advanced KRAS G12C-mutant non-small cell lung cancer (NSCLC), there is a new need to identify factors associated with activity and toxicity among patients treated in routine practice. MATERIALS AND METHODS: We conducted a multicenter retrospective study of patients treated with sotorasib outside of clinical trials to identify factors associated with real-world progression free survival (rwPFS), overall survival (OS), and toxicity. RESULTS: Among 105 patients with advanced KRAS G12C-mutant NSCLC treated with sotorasib, treatment led to a 5.3-month median rwPFS, 12.6-month median OS, and 28% real-world response rate. KEAP1 comutations were associated with shorter rwPFS and OS (rwPFS hazard ratio [HR], 3.19; P = .004; OS HR, 4.10; P = .003); no significant differences in rwPFS or OS were observed across TP53 (rwPFS HR, 1.10; P = .731; OS HR, 1.19; P = .631) or STK11 (rwPFS HR, 1.66; P = .098; OS HR, 1.73; P = .168) comutation status. Notably, almost all patients who developed grade 3 or higher treatment-related adverse events (G3+ TRAEs) had previously been treated with anti-PD-(L)1 therapy. Among these patients, anti-PD-(L)1 therapy exposure within 12 weeks of sotorasib was strongly associated with G3+ TRAEs (P < .001) and TRAE-related sotorasib discontinuation (P = .014). Twenty-eight percent of patients with recent anti-PD-(L)1 therapy exposure experienced G3+ TRAEs, most commonly hepatotoxicity. CONCLUSION: Among patients treated with sotorasib in routine practice, KEAP1 comutations were associated with resistance and recent anti-PD-(L)1 therapy exposure was associated with toxicity. These observations may help guide use of sotorasib in the clinic and may help inform the next generation of KRAS G12C-targeted clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Kelch-Like ECH-Associated Protein 1 , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , NF-E2-Related Factor 2 , Genomics
7.
Nature ; 619(7968): 160-166, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37258666

ABSTRACT

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Animals , Mice , Body Weight , Enzyme Activation , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nucleotides/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Cell Division/drug effects , Substrate Specificity
8.
J Clin Oncol ; 41(18): 3311-3317, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37098232

ABSTRACT

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.In the longest follow-up, to our knowledge, for a KRASG12C inhibitor, we assessed the long-term efficacy, safety, and biomarkers of sotorasib in patients with KRAS G12C-mutated advanced non-small-cell lung cancer (NSCLC) from the CodeBreaK 100 clinical trial (ClinicalTrials.gov identifier: NCT03600883). This multicenter, single-group, open-label phase I/phase II trial enrolled 174 patients with KRAS G12C-mutated, locally advanced or metastatic NSCLC after progression on prior therapies. Patients (N = 174) received sotorasib 960 mg once daily with the primary end points for phase I of safety and tolerability and for phase II of objective response rate (ORR). Sotorasib produced an ORR of 41%, median duration of response of 12.3 months, progression-free survival (PFS) of 6.3 months, overall survival (OS) of 12.5 months, and 2-year OS rate of 33%. Long-term clinical benefit (PFS ≥ 12 months) was observed in 40 (23%) patients across PD-L1 expression levels, in a proportion of patients with somatic STK11 and/or KEAP1 alterations, and was associated with lower baseline circulating tumor DNA levels. Sotorasib was well tolerated, with few late-onset treatment-related toxicities, none of which led to treatment discontinuation. These results demonstrate the long-term benefit of sotorasib, including in subgroups with poor prognosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , NF-E2-Related Factor 2 , Proto-Oncogene Proteins p21(ras)/genetics
9.
Nat Med ; 28(11): 2353-2363, 2022 11.
Article in English | MEDLINE | ID: mdl-36357680

ABSTRACT

Circulating tumor DNA (ctDNA) sequencing guides therapy decisions but has been studied mostly in small cohorts without sufficient follow-up to determine its influence on overall survival. We prospectively followed an international cohort of 1,127 patients with non-small-cell lung cancer and ctDNA-guided therapy. ctDNA detection was associated with shorter survival (hazard ratio (HR), 2.05; 95% confidence interval (CI), 1.74-2.42; P < 0.001) independently of clinicopathologic features and metabolic tumor volume. Among the 722 (64%) patients with detectable ctDNA, 255 (23%) matched to targeted therapy by ctDNA sequencing had longer survival than those not treated with targeted therapy (HR, 0.63; 95% CI, 0.52-0.76; P < 0.001). Genomic alterations in ctDNA not detected by time-matched tissue sequencing were found in 25% of the patients. These ctDNA-only alterations disproportionately featured subclonal drivers of resistance, including RICTOR and PIK3CA alterations, and were associated with short survival. Minimally invasive ctDNA profiling can identify heterogeneous drivers not captured in tissue sequencing and expand community access to life-prolonging therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Humans , Circulating Tumor DNA/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Mutation , High-Throughput Nucleotide Sequencing
12.
Cancer Cell ; 40(3): 221-225, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35290781

ABSTRACT

In the past 20 years we have seen the rise of a new era of cancer research that moved its focus away from the cancer cell itself and revealed a complexity of interactions, both within the tumor and with the host, that ultimately dictate the evolution and progression of the disease. We have witnessed the development of immunotherapies that changed the fate of many patients and new diagnostic strategies with the potential of changing clinical practice. In this article, several experts discuss what lies ahead.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/therapy
13.
JTO Clin Res Rep ; 3(1): 100256, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34984405

ABSTRACT

INTRODUCTION: Somatic KRAS mutations occur in 25% of patients with NSCLC. Treatment with MEK inhibitor monotherapy has not been successful in clinical trials to date. Compensatory activation of FGFR1 was identified as a mechanism of trametinib resistance in KRAS-mutant NSCLC, and combination therapy with trametinib and ponatinib was synergistic in in vitro and in vivo models. This study sought to evaluate this drug combination in patients with KRAS-mutant NSCLC. METHODS: A phase 1 dose escalation study of trametinib and ponatinib was conducted in patients with advanced NSCLC with KRAS mutations. A standard 3-plus-3 dose escalation was done. Patients were treated with the study therapy until intolerable toxicity or disease progression. RESULTS: A total of 12 patients with KRAS-mutant NSCLC were treated (seven at trametinib 2 mg and ponatinib 15 mg, five at trametinib 2 mg and ponatinib 30 mg). Common toxicities observed were rash, diarrhea, and fever. Serious adverse events potentially related to therapy were reported in five patients, including one death in the study and four cardiovascular events. Serious events were observed at both dose levels. Of note, 75% (9 of 12) were assessable for radiographic response and no confirmed partial responses were observed. The median time on study was 43 days. CONCLUSIONS: In this phase 1 study, in patients with KRAS-mutant advanced NSCLC, combined treatment with trametinib and ponatinib was associated with cardiovascular and bleeding toxicities. Exploring the combination of MEK and FGFR1 inhibition in future studies is potentially warranted but alternative agents should be considered to improve safety and tolerability.

14.
Br J Cancer ; 126(6): 889-898, 2022 04.
Article in English | MEDLINE | ID: mdl-34963703

ABSTRACT

BACKGROUND: While 2-4% of lung cancers possess alterations in BRAF, little is known about the immune responsiveness of these tumours. METHODS: Clinical and genomic data were collected from 5945 patients with lung cancers whose tumours underwent next-generation sequencing between 2015 and 2018. Patients were followed through 2020. RESULTS: In total, 127 patients with metastatic BRAF-altered lung cancers were identified: 29 tumours had Class I mutations, 59 had Class II/III alterations, and 39 had variants of unknown significance (VUS). Tumour mutation burden was higher in Class II/III than Class I-altered tumours (8.8 mutations/Mb versus 4.9, P < 0.001), but this difference was diminished when stratified by smoking status. The overall response rate to immune checkpoint inhibitors (ICI) was 9% in Class I-altered tumours and 26% in Class II/III (P = 0.25), with median time on treatment of 1.9 months in both groups. Among patients with Class I-III-altered tumours, 36-month HR for death in those who ever versus never received ICI was 1.82 (1.17-6.11). Nine patients were on ICI for >2 years (two with Class I mutations, two with Class II/III alterations, and five with VUS). CONCLUSIONS: A subset of patients with BRAF-altered lung cancers achieved durable disease control on ICI. However, collectively no significant clinical benefit was seen.


Subject(s)
Immune Checkpoint Inhibitors , Lung Neoplasms , Proto-Oncogene Proteins B-raf , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , High-Throughput Nucleotide Sequencing , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/immunology
15.
Nature ; 599(7886): 679-683, 2021 11.
Article in English | MEDLINE | ID: mdl-34759319

ABSTRACT

Inactive state-selective KRAS(G12C) inhibitors1-8 demonstrate a 30-40% response rate and result in approximately 6-month median progression-free survival in patients with lung cancer9. The genetic basis for resistance to these first-in-class mutant GTPase inhibitors remains under investigation. Here we evaluated matched pre-treatment and post-treatment specimens from 43 patients treated with the KRAS(G12C) inhibitor sotorasib. Multiple treatment-emergent alterations were observed across 27 patients, including alterations in KRAS, NRAS, BRAF, EGFR, FGFR2, MYC and other genes. In preclinical patient-derived xenograft and cell line models, resistance to KRAS(G12C) inhibition was associated with low allele frequency hotspot mutations in KRAS(G12V or G13D), NRAS(Q61K or G13R), MRAS(Q71R) and/or BRAF(G596R), mirroring observations in patients. Single-cell sequencing in an isogenic lineage identified secondary RAS and/or BRAF mutations in the same cells as KRAS(G12C), where they bypassed inhibition without affecting target inactivation. Genetic or pharmacological targeting of ERK signalling intermediates enhanced the antiproliferative effect of G12C inhibitor treatment in models with acquired RAS or BRAF mutations. Our study thus suggests a heterogenous pattern of resistance with multiple subclonal events emerging during G12C inhibitor treatment. A subset of patients in our cohort acquired oncogenic KRAS, NRAS or BRAF mutations, and resistance in this setting may be delayed by co-targeting of ERK signalling intermediates. These findings merit broader evaluation in prospective clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Acetonitriles/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line , Cohort Studies , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , MAP Kinase Signaling System/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays
16.
Science ; 374(6564): 197-201, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618566

ABSTRACT

Recently reported to be effective in patients with lung cancer, KRASG12C inhibitors bind to the inactive, or guanosine diphosphate (GDP)­bound, state of the oncoprotein and require guanosine triphosphate (GTP) hydrolysis for inhibition. However, KRAS mutations prevent the catalytic arginine of GTPase-activating proteins (GAPs) from enhancing an otherwise slow hydrolysis rate. If KRAS mutants are indeed insensitive to GAPs, it is unclear how KRASG12C hydrolyzes sufficient GTP to allow inactive state­selective inhibition. Here, we show that RGS3, a GAP previously known for regulating G protein­coupled receptors, can also enhance the GTPase activity of mutant and wild-type KRAS proteins. Our study reveals an unexpected mechanism that inactivates KRAS and explains the vulnerability to emerging clinically effective therapeutics.


Subject(s)
GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Lung Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/metabolism , RGS Proteins/metabolism , Animals , Cell Extracts , Cell Line, Tumor , Enzyme Activation , Humans , Hydrolysis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice, Nude , Proto-Oncogene Proteins p21(ras)/genetics , RGS Proteins/genetics , Signal Transduction , Xenograft Model Antitumor Assays
17.
N Engl J Med ; 384(25): 2382-2393, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34161704

ABSTRACT

BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRASG12C -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRASG12C inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRASG12C allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRASG12C inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).


Subject(s)
Acetonitriles/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/therapeutic use , Appendiceal Neoplasms/drug therapy , Appendiceal Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Humans , Lung Neoplasms/genetics , Protein Conformation , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/ultrastructure , Pyridines/therapeutic use
18.
Cancer Discov ; 11(1): 17-19, 2021 01.
Article in English | MEDLINE | ID: mdl-34003780

ABSTRACT

Guanine nucleotide exchange factors (GEF) control the rate-limiting step of physiologic RAS activation. In this issue of Cancer Discovery, Hofmann and colleagues describe the discovery of a selective inhibitor targeting the GEF, SOS1, along with its preclinical effects in suppressing KRAS-mutant tumor growth.See related article by Hofmann et al., p. 142.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Guanine Nucleotide Exchange Factors , Humans , Mitogen-Activated Protein Kinase Kinases , Neoplasms/drug therapy , Neoplasms/genetics , Nucleotides , Proto-Oncogene Proteins p21(ras)/genetics
19.
Clin Cancer Res ; 27(9): 2604-2612, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33593884

ABSTRACT

PURPOSE: KRAS G12C is the most common KRAS mutation in primary lung adenocarcinoma. Phase I clinical trials have demonstrated encouraging clinical activity of KRAS G12C inhibitors in the metastatic setting. We investigated disease-free survival (DFS) and tumor genomic features in patients with surgically resected KRAS G12C-mutant lung adenocarcinoma. EXPERIMENTAL DESIGN: Patients who underwent resection of stage I-III lung adenocarcinoma and next-generation sequencing (NGS) were evaluated. Exclusion criteria were receipt of induction therapy, incomplete resection, and low-quality NGS. Mutations were classified as KRAS wild-type (KRAS wt), G12C (KRAS G12C), or non-G12C (KRAS other). DFS was compared between groups using the log-rank test; factors associated with DFS were assessed using Cox regression. Mutual exclusivity and cooccurrence, tumor clonality, and mutational signatures were assessed. RESULTS: In total, 604 patients were included: 374 KRAS wt (62%), 95 KRAS G12C (16%), and 135 KRAS other (22%). Three-year DFS was not different between KRAS-mutant and KRAS wt tumors. However, 3-year DFS was worse in patients with KRAS G12C than KRAS other tumors (log-rank P = 0.029). KRAS G12C tumors had more lymphovascular invasion (51% vs. 37%; P = 0.032) and higher tumor mutation burden [median (interquartile range), 7.0 (5.3-10.8) vs. 6.1 (3.5-9.7); P = 0.021], compared with KRAS other tumors. KRAS G12C mutation was independently associated with worse DFS on multivariable analysis. Our DFS findings were externally validated in an independent The Cancer Genome Atlas cohort. CONCLUSIONS: KRAS G12C mutations are associated with worse DFS after complete resection of stage I-III lung adenocarcinoma. These tumors harbor more aggressive clinicopathologic and genomic features than other KRAS-mutant tumors. We identified a high-risk group for whom KRAS G12C inhibitors may be investigated to improve survival.


Subject(s)
Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Alleles , Amino Acid Substitution , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/surgery , Aged , Biomarkers, Tumor , Female , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Recurrence , Survival Analysis , Treatment Outcome
20.
Clin Cancer Res ; 27(8): 2209-2215, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33558425

ABSTRACT

PURPOSE: KRAS mutations are identified in approximately 30% of patients with non-small cell lung cancer (NSCLC). Novel direct inhibitors of KRAS G12C have shown activity in early-phase clinical trials. We hypothesized that patients with KRAS G12C mutations may have distinct clinical characteristics and responses to therapies. EXPERIMENTAL DESIGN: Through routine next-generation sequencing, we identified patients with KRAS-mutant NSCLC treated at Memorial Sloan Kettering Cancer Center (New York, NY) from 2014 to 2018 and reviewed tumor characteristics, overall survival, and treatment outcomes. RESULTS: We identified 1,194 patients with KRAS-mutant NSCLC, including 770 with recurrent or metastatic disease. KRAS G12C mutations were present in 46% and KRAS non-G12C mutations in 54%. Patients with KRAS G12C had a higher tumor mutation burden (median, 8.8 vs. 7 mut/Mb; P = 0.006) and higher median PD-L1 expression (5% vs. 1%). The comutation patterns of STK11 (28% vs. 29%) and KEAP1 (23% vs. 24%) were similar. The median overall survivals from diagnosis were similar for KRAS G12C (13.4 months) and KRAS non-G12C mutations (13.1 months; P = 0.96). In patients with PD-L1 ≥50%, there was not a significant difference in response rate with single-agent immune checkpoint inhibitor for patients with KRAS G12C mutations (40% vs. 58%; P = 0.07). CONCLUSIONS: We provide outcome data for a large series of patients with KRAS G12C-mutant NSCLC with available therapies, demonstrating that responses and duration of benefit with available therapies are similar to those seen in patients with KRAS non-G12C mutations. Strategies to incorporate new targeted therapies into the current treatment paradigm will need to consider outcomes specific to patients harboring KRAS G12C mutations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , DNA Mutational Analysis , Female , Follow-Up Studies , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Middle Aged , Mutation , Progression-Free Survival , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...