Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 20(4): 712-726, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35482387

ABSTRACT

SARS-CoV-2 RNA quantification in wastewater has emerged as a relevant additional means to monitor the COVID-19 pandemic. However, the concentration can be affected by black water dilution factors or movements of the sewer shed population, leading to misinterpretation of measurement results. The aim of this study was to evaluate the performance of different indicators to accurately interpret SARS-CoV-2 in wastewater. Weekly/bi-weekly measurements from three cities in France were analysed from February to September 2021. The concentrations of SARS-CoV-2 gene copies were normalised to the faecal-contributing population using simple sewage component indicators. To reduce the measurement error, a composite index was created to combine simultaneously the information carried by the simple indicators. The results showed that the regularity (mean absolute difference between observation and the smoothed curve) of the simple indicators substantially varied across sampling points. The composite index consistently showed better regularity compared to the other indicators and was associated to the lowest variation in correlation coefficient across sampling points. These findings suggest the recommendation for the use of a composite index in wastewater-based epidemiology to compensate for variability in measurement results.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Wastewater/analysis
2.
Water Res ; 202: 117435, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34330027

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is shed in the feces of infected people. As a consequence, genomic RNA of the virus can be detected in wastewater. Although the presence of viral RNA does not inform on the infectivity of the virus, this presence of genetic material raised the question of the effectiveness of treatment processes in reducing the virus in wastewater and sludge. In this work, treatment lines of 16 wastewater treatment plants were monitored to evaluate the removal of SARS-CoV-2 RNA in raw, processed waters and sludge, from March to May 2020. Viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in 5 different laboratories. These laboratories participated in proficiency testing scheme and their results demonstrated the reliability and comparability of the results obtained for each one. SARS-CoV-2 RNA was found in 50.5% of the 101 influent wastewater samples characterized. Positive results were detected more frequently in those regions with a COVID-19 incidence higher than 100 cases per 100,000 inhabitants. Wastewater treatment plants (WWTPs) significantly reduced the occurrence of virus RNA along the water treatment lines. Secondary treatment effluents showed an occurrence of SARS-CoV-2 RNA in 23.3% of the samples and no positive results were found after MBR and chlorination. Non-treated sludge (from primary and secondary treatments) presented a higher occurrence of SARS-CoV-2 RNA than the corresponding water samples, demonstrating the affinity of virus particles for solids. Furthermore, SARS-CoV-2 RNA was detected in treated sludge after thickening and anaerobic digestion, whereas viral RNA was completely eliminated from sludge only when thermal hydrolysis was applied. Finally, co-analysis of SARS-CoV-2 and F-specific RNA bacteriophages was done in the same water and sludge samples in order to investigate the potential use of these bacteriophages as indicators of SARS-CoV-2 fate and reduction along the wastewater treatment.


Subject(s)
COVID-19 , Wastewater , Humans , RNA, Viral , Reproducibility of Results , SARS-CoV-2 , Sewage
3.
Int J Hyg Environ Health ; 222(4): 593-606, 2019 05.
Article in English | MEDLINE | ID: mdl-30910612

ABSTRACT

The United Nations' Sustainable Development Goals initiated in 2016 reiterated the need for safe water and healthy lives across the globe. The tenth anniversary meeting of the International Water and Health Seminar in 2018 brought together experts, students, and practitioners, setting the stage for development of an inclusive and evidence-based research agenda on water and health. Data collection relied on a nominal group technique gathering perceived research priorities as well as underlying drivers and adaptation needs. Under a common driver of public health protection, primary research priorities included the socioeconomy of water, risk assessment and management, and improved monitoring methods and intelligence. Adaptations stemming from these drivers included translating existing knowledge to providing safe and timely services to support the diversity of human water needs. Our findings present a comprehensive agenda of topics at the forefront of water and health research. This information can frame and inform collective efforts of water and health researchers over the coming decades, contributing to improved water services, public health, and socioeconomic outcomes.


Subject(s)
Public Health , Water , Humans , Research , Surveys and Questionnaires , Water Resources
4.
Environ Sci Pollut Res Int ; 25(32): 31957-31970, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30218334

ABSTRACT

Projections for the next 50 years predict a widespread distribution of hypoxic zones in the open and coastal ocean due to environmental and global changes. The Tidal Garonne River (SW France) has already experienced few episodic hypoxic events. However, predicted future climate and demographic changes suggest that summer hypoxia could become more severe and even permanent near the city of Bordeaux in the next few decades. A 3D model, which couples hydrodynamic, sediment transport, and biogeochemical processes, is applied to assess the impact of factors submitted to global and regional climate changes on oxygenation in the turbidity maximum zone (TMZ) of the Tidal Garonne River during low-discharge periods. The model simulates an intensification of summer hypoxia with an increase in temperature, a decrease in river flow or an increase in the local population, but not with sea level rise, which has a negligible impact on dissolved oxygen. Different scenarios were tested by combining these different factors according to the regional projections for 2050 and 2100. All the simulations showed a trend toward a spatial and temporal extension of summer hypoxia that needs to be considered by local water authorities to impose management strategies to protect the ecosystem.


Subject(s)
Environmental Monitoring , Eutrophication , Water Pollution/statistics & numerical data , Ecosystem , France , Oxygen/analysis , Rivers , Seasons , Temperature
5.
Water Sci Technol ; 78(3-4): 699-707, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30208010

ABSTRACT

Quantifying pollutant loads from combined sewer overflows (CSOs) is necessary for assessing impacts of urban drainage on receiving water bodies. Based on data obtained at three adjacent CSO structures in the Louis Fargue catchment in Bordeaux, France, this study implements multiple linear regression (MLR) and random forest regression (RFR) approaches to develop statistical models for estimating emitted loads of total suspended solids (TSS). Comparison between hierarchical clustering selection and random selection of CSO events for model calibration is included in model development. The results indicate that selection of the model's explanatory variables depends on both the type of approach and the CSO structure. By using the cluster technique to select representative events for model calibration, model predictability is generally improved. For the available dataset, MLR may have advantages over RFR in terms of verification performance and lower range of error due to splitting events for calibration and verification. But RFR model uncertainty bands are considerably narrower than the MLR ones.


Subject(s)
Environmental Monitoring , Sewage , Environmental Pollutants , France , Multivariate Analysis , Rain
7.
Anal Bioanal Chem ; 407(28): 8585-604, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26353747

ABSTRACT

Comprehensive source and fate studies of pharmaceuticals in the environment require analytical methods able to quantify a wide range of molecules over various therapeutic classes, in aqueous and solid matrices. Considering this need, the development of an analytical method to determine 53 pharmaceuticals in aqueous phase and in solid matrices using a combination of microwave-assisted extraction, solid phase extraction, and liquid chromatography coupled with tandem mass spectrometry is reported. Method was successfully validated regarding linearity, repeatability, and overall protocol recovery. Method detection limits (MDLs) do not exceed 1 ng L(-1) for 40 molecules in aqueous matrices (6 ng L(-1) for the 13 remaining), while subnanogram per gram MDLs were reached for 38 molecules in solid phase (29 ng g(-1) for the 15 remaining). Losses due to preparative steps were assessed for the 32 analytes associated to their labeled homologue, revealing an average loss of 40 % during reconcentration, the most altering step. Presence of analytes in wastewater treatment plant (WWTP) effluent aqueous phase and suspended solids (SS) as well as in river water, SS, and sediments was then investigated on a periurban river located in the suburbs of Bordeaux, France, revealing a major contribution of WWTP effluent to the river contamination. Sorption on river SS exceeded 5 % of total concentration for amitriptyline, fluoxetine, imipramine, ritonavir, sildenafil, and propranolol and appeared to be submitted to a seasonal influence. Sediment contamination was lower than the one of SS, organic carbon content, and sediment fine element proportion was accountable for the highest measured concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...