Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1095862, 2023.
Article in English | MEDLINE | ID: mdl-37235033

ABSTRACT

The phenolic acids, ferulic acid and p-coumaric acid, are components of plant cell walls in grasses, including many of our major food crops. They have important health-promoting properties in grain, and influence the digestibility of biomass for industrial processing and livestock feed. Both phenolic acids are assumed to be critical to cell wall integrity and ferulic acid, at least, is important for cross-linking cell wall components, but the role of p-coumaric acid is unclear. Here we identify alleles of a BAHD p-coumaroyl arabinoxylan transferase, HvAT10, as responsible for the natural variation in cell wall-esterified phenolic acids in whole grain within a cultivated two-row spring barley panel. We show that HvAT10 is rendered non-functional by a premature stop codon mutation in half of the genotypes in our mapping panel. This results in a dramatic reduction in grain cell wall-esterifed p-coumaric acid, a moderate rise in ferulic acid, and a clear increase in the ferulic acid to p-coumaric acid ratio. The mutation is virtually absent in wild and landrace germplasm suggesting an important function for grain arabinoxylan p-coumaroylation pre-domestication that is dispensable in modern agriculture. Intriguingly, we detected detrimental impacts of the mutated locus on grain quality traits where it was associated with smaller grain and poorer malting properties. HvAT10 could be a focus for improving grain quality for malting or phenolic acid content in wholegrain foods.

2.
Front Plant Sci ; 13: 883139, 2022.
Article in English | MEDLINE | ID: mdl-36160970

ABSTRACT

(1,3;1,4)-ß-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-ß-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-ß-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located -331 bp to -382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.

3.
mBio ; 12(2)2021 04 13.
Article in English | MEDLINE | ID: mdl-33849982

ABSTRACT

The fungi are an enormously successful eukaryotic lineage that has colonized every aerobic habitat on Earth. This spectacular expansion is reflected in the dynamism and diversity of the fungal cell wall, a matrix of polysaccharides and glycoproteins pivotal to fungal life history strategies and a major target in the development of antifungal compounds. Cell wall polysaccharides are typically synthesized by Leloir glycosyltransferases, enzymes that are notoriously difficult to characterize, but their nucleotide-sugar substrates are well known and provide the opportunity to inspect the monosaccharides available for incorporation into cell wall polysaccharides and glycoproteins. In this work, we have used phylogenomic analyses of the enzymatic pathways that synthesize and interconvert nucleotide-sugars to predict potential cell wall monosaccharide composition across 491 fungal taxa. The results show a complex evolutionary history of these cell wall enzyme pathways and, by association, of the fungal cell wall. In particular, we see a significant reduction in monosaccharide diversity during fungal evolution, most notably in the colonization of terrestrial habitats. However, monosaccharide distribution is also shown to be varied across later-diverging fungal lineages.IMPORTANCE This study provides new insights into the complex evolutionary history of the fungal cell wall. We analyzed fungal enzymes that convert sugars acquired from the environment into the diverse sugars that make up the fundamental building blocks of the cell wall. Species-specific profiles of these nucleotide-sugar interconverting (NSI) enzymes for 491 fungi demonstrated multiple losses and gains of NSI proteins, revealing the rich diversity of cell wall architecture across the kingdom. Pragmatically, because cell walls are essential to fungi, our observations of variation in sugar diversity have important implications for the development of antifungal compounds that target the sugar profiles of specific pathogens.


Subject(s)
Cell Wall/chemistry , Fungal Proteins/metabolism , Fungi/enzymology , Fungi/genetics , Nucleotides/metabolism , Phylogeny , Sugars/metabolism , Biosynthetic Pathways , Cell Wall/genetics , Fungal Proteins/genetics , Fungi/metabolism , Genetic Variation , Monosaccharides/genetics , Monosaccharides/metabolism , Sugars/classification
4.
ACS Cent Sci ; 5(1): 73-84, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30693327

ABSTRACT

As a significant component of monocot cell walls, (1,3;1,4)-ß-glucan has conclusively been shown to be synthesized by the cellulose synthase-like F6 protein. In this study, we investigated the synthetic activity of other members of the barley (Hordeum vulgare) CslF gene family using heterologous expression. As expected, the majority of the genes encode proteins that are capable of synthesizing detectable levels of (1,3;1,4)-ß-glucan. However, overexpression of HvCslF3 and HvCslF10 genes resulted in the synthesis of a novel linear glucoxylan that consists of (1,4)-ß-linked glucose and xylose residues. To demonstrate that this product was not an aberration of the heterologous system, the characteristic (1,4)-ß-linkage between glucose and xylose was confirmed to be present in wild type barley tissues known to contain HvCslF3 and HvCslF10 transcripts. This polysaccharide linkage has also been reported in species of Ulva, a marine green alga, and has significant implications for defining the specificity of the cell wall content of many crop species. This finding supports previous observations that members of a single CSL family may not possess the same carbohydrate synthetic activity, with the CSLF family now associated with the formation of not only (1,3)- and (1,4)-ß-glucosidic linkages, but also (1,4)-ß-glucosidic and (1,4)-ß-xylosidic linkages.

5.
Cell Surf ; 5: 100029, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743145

ABSTRACT

Infection of barley with the powdery mildew causal agent, Blumeria graminis f. sp. hordei (Bgh), can lead to devastating damage to barley crops. The recent emergence of fungicide resistance imposes a need to develop new antifungal strategies. The enzymes involved in cell wall biosynthesis are ideal targets for the development of fungicides. However, in order to narrow down any target proteins involved in cell wall formation, a greater understanding of the cell wall structure and composition is required. Here, we present a detailed carbohydrate analysis of the Bgh conidial cell wall, a full annotation of Carbohydrate Active enZymes (CAZy) in the Bgh genome, and a comprehensive expression profile of the genes involved in cell wall metabolism. Glycosidic linkage analysis has revealed that the cell wall polysaccharide fraction of Bgh conidia predominantly consists of glucosyl residues (63.1%) and has a greater proportion of galactopyranosyl residues compared to other species (8.5%). Trace amounts of xylosyl residues were also detected, which is unusual in ascomycetes. Transcripts of the genes involved in cell wall metabolism show high expression of chitin deacetylases, which assist fungi in evading the host defence system by deacetylating chitin to chitosan. The data presented suggest that the cell wall components of the conidia and the corresponding obligate biotrophic CAZy gene profile play a key role in the infection process.

6.
Cell Surf ; 5: 100030, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743146

ABSTRACT

As an obligate biotroph, Blumeria graminis f. sp. hordei (Bgh) cannot be grown in an axenic culture, and instead must be cultivated on its host species, Hordeum vulgare (barley). In this study an in vitro system utilizing n-hexacosanal, a constituent of the barley cuticle and known inducer of Bgh germination, was used to cultivate Bgh and differentiate conidia up to the appressorial germ tube stage for analysis. Transcriptomic and proteomic profiling of the appressorial germ tube stage revealed that there was a significant shift towards energy and protein production during the pre-penetrative phase of development, with an up-regulation of enzymes associated with cellular respiration and protein synthesis, modification and transport. Glycosidic linkage analysis of the cell wall polysaccharides demonstrated that during appressorial development an increase in 1,3- and 1,4-linked glucosyl residues and xylosyl residues was detected along with a significant decrease in galactosyl residues. The use of this in vitro cultivation method demonstrates that it is possible to analyse the pre-penetrative processes of Bgh development in the absence of a plant host.

7.
Plants (Basel) ; 7(2)2018 May 31.
Article in English | MEDLINE | ID: mdl-29857498

ABSTRACT

The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

8.
Plant Physiol ; 177(3): 1124-1141, 2018 07.
Article in English | MEDLINE | ID: mdl-29780036

ABSTRACT

Cell walls are crucial for the integrity and function of all land plants and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterization of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was thought previously to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-ß-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae.


Subject(s)
Cell Wall/metabolism , Glucosyltransferases/genetics , Phylogeny , Plant Proteins/genetics , Evolution, Molecular , Glucosyltransferases/metabolism , Magnoliopsida/enzymology , Magnoliopsida/genetics , Multigene Family , Plant Proteins/metabolism , Plants, Genetically Modified , Poaceae/enzymology , Poaceae/genetics , Nicotiana/genetics , Nicotiana/metabolism , beta-Glucans/metabolism
9.
PLoS One ; 12(8): e0182537, 2017.
Article in English | MEDLINE | ID: mdl-28771585

ABSTRACT

In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 µg/g to ~ 9 µg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.


Subject(s)
Chromosome Mapping/methods , Hordeum/genetics , Quantitative Trait Loci , Xylans/metabolism , Chromatography, Liquid , Edible Grain/genetics , Genome, Plant , Genome-Wide Association Study/methods , Glycoside Hydrolases/genetics , Glycosyltransferases/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Xylans/genetics
10.
Front Plant Sci ; 8: 445, 2017.
Article in English | MEDLINE | ID: mdl-28408913

ABSTRACT

Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.

11.
Front Plant Sci ; 7: 984, 2016.
Article in English | MEDLINE | ID: mdl-27559336

ABSTRACT

The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them.

12.
New Phytol ; 212(2): 434-43, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27364233

ABSTRACT

The recent characterization of the polysaccharide composition of papillae deposited at the barley cell wall during infection by the powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh), has provided new targets for the generation of enhanced disease resistance. The role of callose in papilla-based penetration resistance of crop species is largely unknown because the genes involved in the observed callose accumulation have not been identified unequivocally. We have employed both comparative and functional genomics approaches to identify the functional orthologue of AtGsl5 in the barley genome. HvGsl6 (the barley glucan synthase-like 6 gene), which has the highest sequence identity to AtGsl5, is the only Bgh-induced gene among the HvGsls examined in this study. Through double-stranded RNA interference (dsRNAi)-mediated silencing of HvGsl6, we have shown that the down-regulation of HvGsl6 is associated with a lower accumulation of papillary and wound callose and a higher susceptibility to penetration of the papillae by Bgh, compared with control lines. The results indicate that the HvGsl6 gene is a functional orthologue of AtGsl5 and is involved in papillary callose accumulation in barley. The increased susceptibility of HvGsl6 dsRNAi transgenic lines to infection indicates that callose positively contributes to the barley fungal penetration resistance mechanism.


Subject(s)
Ascomycota/physiology , Cell Wall/microbiology , Down-Regulation , Gene Expression Regulation, Plant , Genes, Plant , Glucosyltransferases/genetics , Hordeum/enzymology , Hordeum/genetics , Arabidopsis/genetics , Down-Regulation/genetics , Hordeum/microbiology , Phylogeny , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transformation, Genetic
13.
New Phytol ; 212(2): 421-33, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27352228

ABSTRACT

Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.


Subject(s)
Ascomycota/physiology , Genes, Plant , Glucosyltransferases/genetics , Hordeum/genetics , Hordeum/microbiology , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Arabidopsis/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Glucosyltransferases/metabolism , Hordeum/enzymology , Plant Epidermis/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Polysaccharides/metabolism , Sequence Analysis, DNA
14.
Biochemistry ; 55(13): 2054-61, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26967377

ABSTRACT

Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-ß-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4)-linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-ß-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-ß-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.


Subject(s)
Dietary Fiber/analysis , Glucosyltransferases/metabolism , Hordeum/enzymology , Models, Molecular , Plant Proteins/metabolism , Sorghum/enzymology , beta-Glucans/metabolism , Amino Acid Sequence , Amino Acid Substitution , Catalytic Domain , Computational Biology , Expert Systems , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Conformation , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Point Mutation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein , beta-Glucans/chemistry
15.
Plant Physiol ; 170(3): 1549-65, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26754666

ABSTRACT

Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development.


Subject(s)
Endosperm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hordeum/genetics , Cell Wall/genetics , Cell Wall/metabolism , Cluster Analysis , Edible Grain/cytology , Edible Grain/embryology , Edible Grain/genetics , Endosperm/cytology , Endosperm/embryology , Gene Ontology , Gene Regulatory Networks , Hordeum/cytology , Hordeum/embryology , Oligonucleotide Array Sequence Analysis , Plant Proteins/classification , Plant Proteins/genetics , Pollination/genetics , Time Factors
16.
Plant Sci ; 242: 260-269, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26566843

ABSTRACT

Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-ß-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-ß-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-ß-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries.


Subject(s)
Cell Wall/metabolism , Edible Grain/metabolism , Endosperm/metabolism , Hordeum/metabolism , Water/metabolism , Biological Transport/physiology , Cell Wall/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Edible Grain/genetics , Endosperm/genetics , Food Industry/methods , Genotype , Glucans/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Hordeum/genetics , Mutation , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Polysaccharides/metabolism , Quantitative Trait Loci/genetics , RNA Interference
17.
Mol Breed ; 35: 20, 2015.
Article in English | MEDLINE | ID: mdl-25620877

ABSTRACT

The cellulose synthase-like gene HvCslF6, which is essential for (1,3;1,4)-ß-glucan biosynthesis in barley, collocates with quantitative trait loci (QTL) for grain (1,3;1,4)-ß-glucan concentration in several populations, including CDC Bold × TR251. Here, an alanine-to-threonine substitution (caused by the only non-synonymous difference between the CDC Bold and TR251 HvCslF6 alleles) was mapped to a position within HvCSLF6 that seems unlikely to affect enzyme stability or function. Consistent with this, transient expression of full-length HvCslF6 cDNAs from CDC Bold and TR251 in Nicotianabenthamiana led to accumulation of similar amounts of (1,3;1,4)-ß-glucan accumulation. Monitoring of HvCslF6 transcripts throughout grain development revealed a significant difference late in grain development (more than 30 days after pollination), with TR251 [the parent with higher grain (1,3;1,4)-ß-glucan] exhibiting higher transcript levels than CDC Bold. A similar difference was observed between Beka and Logan, the parents of another population in which a QTL had been mapped in the HvCslF6 region. Sequencing of a putative promoter region of HvCslF6 revealed numerous polymorphisms between CDC Bold and TR251, but none between Beka and Logan. While the results of this work indicate that naturally occurring quantitative differences in (1,3;1,4)-ß-glucan accumulation may be due to cis-regulated differences in HvCslF6 expression, these could not be attributed to any specific DNA sequence polymorphism. Nevertheless, information on HvCslF6 sequence polymorphism was used to develop molecular markers that could be used in barley breeding to select for the desired [low or high (1,3;1,4)-ß-glucan] allele of the QTL.

18.
New Phytol ; 204(3): 650-660, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25138067

ABSTRACT

In plants, cell walls are one of the first lines of defence for protecting cells from successful invasion by fungal pathogens and are a major factor in basal host resistance. For the plant cell to block penetration attempts, it must adapt its cell wall to withstand the physical and chemical forces applied by the fungus. Papillae that have been effective in preventing penetration by pathogens are traditionally believed to contain callose as the main polysaccharide component. Here, we have re-examined the composition of papillae of barley (Hordeum vulgare) attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) using a range of antibodies and carbohydrate-binding modules that are targeted to cell wall polysaccharides. The data show that barley papillae induced during infection with Bgh contain, in addition to callose, significant concentrations of cellulose and arabinoxylan. Higher concentrations of callose, arabinoxylan and cellulose are found in effective papillae, compared with ineffective papillae. The papillae have a layered structure, with the inner core consisting of callose and arabinoxylan and the outer layer containing arabinoxylan and cellulose. The association of arabinoxylan and cellulose with penetration resistance suggests new targets for the improvement of papilla composition and enhanced disease resistance.


Subject(s)
Ascomycota/physiology , Cellulose/metabolism , Glucans/metabolism , Hordeum/microbiology , Plant Leaves/metabolism , Xylans/metabolism , Hordeum/metabolism , Plant Diseases , Plant Leaves/cytology , Plant Leaves/microbiology
19.
PLoS One ; 9(3): e90888, 2014.
Article in English | MEDLINE | ID: mdl-24595438

ABSTRACT

An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-ß-glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-ß-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-ß-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-ß-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-ß-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls.


Subject(s)
Cell Wall/genetics , Genome, Plant/genetics , Glucosyltransferases/genetics , Hordeum/genetics , Phylogeny , beta-Glucans/metabolism , Amino Acid Sequence , Base Sequence , Bayes Theorem , DNA Primers/genetics , Gene Components , Glucosyltransferases/metabolism , Models, Genetic , Molecular Sequence Data , Plant Leaves/metabolism , Plant Roots/metabolism , Sequence Alignment , Sequence Analysis, DNA , Nicotiana/metabolism
20.
Funct Plant Biol ; 35(5): 347-359, 2008 Jul.
Article in English | MEDLINE | ID: mdl-32688792

ABSTRACT

Respiratory burst oxidase homologues (RBOHs) of the human phagocyte gp91phox gene have been isolated from several plant species and the proteins that they encode have been shown to play important roles in the cellular response to biotic stress via the production of superoxide. In this study we have identified and preliminarily characterised six RBOHs from barley (Hordeum vulgare L.). Conservation of the genomic structure and conceptual protein sequence was observed between all six barley RBOH genes when compared with Arabidopsis and rice RBOH gene family members. Four of the six barley RBOH transcripts had wide-spread constitutive spatial expression patterns. The inducible expression profiles of HvRBOHF1 and HvRBOHF2 in response to infection by the necrotrophic fungal pathogens Pyrenophora teres f. teres Drechsler and Rhynchosporium secalis (Oudem) J. Davis were further characterised by quantitative real-time PCR (qPCR). Increased expression of both transcripts was observed in leaf epidermal tissue in response to infection, which is in keeping with a suggested role for both transcripts in the early oxidative burst during the plant response to pathogen invasion. This research provides a basis for further analysis and establishment of the roles of this RBOH family in various reactive oxygen species dependent processes in barley.

SELECTION OF CITATIONS
SEARCH DETAIL
...