Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Biophys J ; 122(12): 2564-2576, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37177783

ABSTRACT

Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.


Subject(s)
Anemia, Sickle Cell , Laminin , Humans , Laminin/metabolism , Erythrocytes , Cell Adhesion , Erythrocytes, Abnormal
2.
Br J Haematol ; 201(3): 552-563, 2023 05.
Article in English | MEDLINE | ID: mdl-36604837

ABSTRACT

Endothelial activation and sickle red blood cell (RBC) adhesion are central to the pathogenesis of sickle cell disease (SCD). Quantitatively, RBC-derived extracellular vesicles (REVs) are more abundant from SS RBCs compared with healthy RBCs (AA RBCs). Sickle RBC-derived REVs (SS REVs) are known to promote endothelial cell (EC) activation through cell signalling and transcriptional regulation at longer terms. However, the SS REV-mediated short-term non-transcriptional response of EC is unclear. Here, we examined the impact of SS REVs on acute microvascular EC activation and RBC adhesion at 2 h. Compared with AA REVs, SS REVs promoted human pulmonary microvascular ECs (HPMEC) activation indicated by increased von Willebrand factor (VWF) expression. Under microfluidic conditions, we found abnormal SS RBC adhesion to HPMECs exposed to SS REVs. This enhanced SS RBC adhesion was reduced by haeme binding protein haemopexin or VWF cleaving protease ADAMTS13 to a level similar to HPMECs treated with AA REVs. Consistent with these observations, haemin- or SS REV-induced microvascular stasis in SS mice with implanted dorsal skin-fold chambers that was inhibited by ADAMTS13. The adhesion induced by SS REVs was variable and was higher with SS RBCs from patients with increased markers of haemolysis (lactate dehydrogenase and reticulocyte count) or a concomitant clinical diagnosis of deep vein thrombosis. Our results emphasise the critical contribution made by REVs to the pathophysiology of SCD by triggering acute microvascular EC activation and abnormal RBC adhesion. These findings may help to better understand acute pathophysiological mechanism of SCD and thereby the development of new treatment strategies using VWF as a potential target.


Subject(s)
Anemia, Sickle Cell , Endothelial Cells , Humans , Animals , Mice , Endothelial Cells/pathology , von Willebrand Factor/metabolism , Cell Adhesion , Erythrocytes/metabolism
3.
Blood Adv ; 7(10): 2094-2104, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36652689

ABSTRACT

Abnormal erythrocyte adhesion owing to polymerization of sickle hemoglobin is central to the pathophysiology of sickle cell disease (SCD). Mature erythrocytes constitute >80% of all erythrocytes in SCD; however, the relative contributions of erythrocytes to acute and chronic vasculopathy in SCD are not well understood. Here, we showed that bending stress exerted on the erythrocyte plasma membrane by polymerization of sickle hemoglobin under hypoxia, enhances sulfatide-mediated abnormal mature erythrocyte adhesion. We hypothesized that sphingomyelinase (SMase) activity, which is upregulated by accumulated bending energy, leads to elevated membrane sulfatide availability, and thus, hypoxic mature erythrocyte adhesion. We found that mature erythrocyte adhesion to laminin in controlled microfluidic experiments is significantly greater under hypoxia than under normoxia (1856 ± 481 vs 78 ± 23, mean ± SEM), whereas sickle reticulocyte (early erythrocyte) adhesion, high to begin with, does not change (1281 ± 299 vs 1258 ± 328, mean ± SEM). We showed that greater mean accumulated bending energy of adhered mature erythrocytes was associated with higher acid SMase activity and increased mature erythrocyte adhesion (P = .022, for acid SMase activity and P = .002 for the increase in mature erythrocyte adhesion with hypoxia, N = 5). In addition, hypoxia results in sulfatide exposure of the erythrocyte membrane, and an increase in SMase, whereas anti-sulfatide inhibits enhanced adhesion of erythrocytes. These results suggest that the lipid components of the plasma membrane contribute to SCD complications. Therefore, sulfatide and the components of its upregulation pathway, particularly SMase, should be further explored as potential therapeutic targets for inhibiting sickle erythrocyte adhesion.


Subject(s)
Anemia, Sickle Cell , Hemoglobin, Sickle , Humans , Hemoglobin, Sickle/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Erythrocytes/metabolism , Erythrocyte Membrane/metabolism , Hypoxia/metabolism
4.
Biosens Bioelectron ; 222: 114921, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36521205

ABSTRACT

Neutrophil recruitment to the inflamed endothelium is a multistep process and is of utmost importance in the development of the hallmark vaso-occlusive crisis in sickle cell disease (SCD). However, there lacks a standardized, clinically feasible approach for assessing neutrophil recruitment to the inflamed endothelium for individualized risk stratification and therapeutic response prediction in SCD. Here, we describe a microfluidic device functionalized with E-selectin, a critical endothelial receptor for the neutrophil recruitment process, as a strategy to assess neutrophil binding under physiologic flow in normoxia and clinically relevant hypoxia in SCD. We show that hypoxia significantly enhances neutrophil binding to E-selectin and promotes the formation of neutrophil-platelet aggregates. Moreover, we identified two distinct patient populations: a more severe clinical phenotype with elevated lactate dehydrogenase levels and absolute reticulocyte counts but lowered fetal hemoglobin levels associated with constitutively less neutrophil binding to E-selectin. Mechanistically, we demonstrate that the extent of neutrophil activation correlates with membrane L-selectin shedding, resulting in the loss of ligand interaction sites with E-selectin. We also show that inhibition of E-selectin significantly reduces leukocyte recruitment to activated endothelial cells. Our findings add mechanistic insight into neutrophil-endothelial interactions under hypoxia and provide a clinically feasible means for assessing neutrophil binding to E-selectin using clinical whole blood samples, which can help guide therapeutic decisions for SCD patients.


Subject(s)
Anemia, Sickle Cell , Biosensing Techniques , Humans , E-Selectin/therapeutic use , Endothelial Cells/metabolism , Neutrophil Infiltration , Cell Adhesion , Endothelium/metabolism , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Lab-On-A-Chip Devices , Hypoxia
5.
Blood ; 140(19): 2005-2006, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36355466
6.
Br J Haematol ; 198(5): 893-902, 2022 09.
Article in English | MEDLINE | ID: mdl-35822297

ABSTRACT

Individuals with sickle cell disease (SCD) have persistently elevated thrombin generation that results in a state of systemic hypercoagulability. Antithrombin-III (ATIII), an endogenous serine protease inhibitor, inhibits several enzymes in the coagulation cascade, including thrombin. Here, we utilize a biomimetic microfluidic device to model the morphology and adhesive properties of endothelial cells (ECs) activated by thrombin and examine the efficacy of ATIII in mitigating the adhesion of SCD patient-derived red blood cells (RBCs) and EC retraction. Microfluidic devices were fabricated, seeded with ECs, and incubated under physiological shear stress. Cells were then activated with thrombin with or without an ATIII pretreatment. Blood samples from subjects with normal haemoglobin (HbAA) and subjects with homozygous SCD (HbSS) were used to examine RBC adhesion to ECs. Endothelial cell surface adhesion molecule expression and confluency in response to thrombin and ATIII treatments were also evaluated. We found that ATIII pretreatment of ECs reduced HbSS RBC adhesion to thrombin-activated endothelium. Furthermore, ATIII mitigated cellular contraction and reduced surface expression of von Willebrand factor and vascular cell adhesion molecule-1 (VCAM-1) mediated by thrombin. Our findings suggest that, by attenuating thrombin-mediated EC damage and RBC adhesion to endothelium, ATIII may alleviate the thromboinflammatory manifestations of SCD.


Subject(s)
Anemia, Sickle Cell , Thrombin , Anticoagulants/pharmacology , Antithrombins/metabolism , Antithrombins/pharmacology , Cell Adhesion , Endothelial Cells , Endothelium, Vascular/metabolism , Erythrocytes , Humans , Thrombin/metabolism , Thrombin/pharmacology
7.
J Pain Res ; 15: 71-91, 2022.
Article in English | MEDLINE | ID: mdl-35046718

ABSTRACT

PURPOSE: To investigate the feasibility, acceptability, and preliminary efficacy of a 6-session music therapy protocol on self-efficacy, quality of life, and coping skills in adults with sickle cell disease (SCD). PATIENTS AND METHODS: Using a mixed-methods intervention design, adults with SCD (ages 21-57; mean age 32.33) were randomized (1:1) to either 1) a 6-session music therapy (MT) intervention (n = 12) or 2) waitlist control (WLC) (n = 12) using stratified randomization where factors were age in years (≤30 vs >30), and sex (male, female). All participants completed two weeks of daily electronic pain diary entries and self-efficacy, quality of life, and coping skills measures before and after their assigned study condition to explore preliminary efficacy. MT participants were taught music exercises accessed via smartphone and subsequently interviewed to determine feasibility and acceptability. RESULTS: The enrollment rate was 89%. All study measures were completed, with high rates of electronic pain diary completion at baseline (70%) and 2-week follow-up (66%). Interviews revealed two overall themes related to MT participants' experience: 1) participants learned new self-management skills and 2) MT improved participants' ability to cope with pain. MT participants demonstrated 100% attendance. In preliminary analyses, MT participants demonstrated significant improvements (means ± SD) in self-efficacy (5.42 ± 5.43, p = 0.008, d = 1.20), PROMIS sleep disturbance (-1.49 ± 6.68, p = 0.023, d = -0.99), PROMIS pain interference (-2.10 ± 4.68, p = 0.016, d = -1.06), and ASCQ-Me social functioning impact scores (2.97 ± 6.91, p = 0.018, d = 1.05) compared to WLC participants. CONCLUSION: Preliminary findings support the feasibility and acceptability of music therapy for home use in adults with SCD. While music therapy may assist adults with SCD in improving self-efficacy and quality of life, subsequent, fully-powered clinical research is needed to determine its efficacy.

8.
Am J Hematol ; 96(12): 1630-1638, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34626431

ABSTRACT

The six-minute walk test (6MWT) has been used in patients with sickle cell disease (SCD), in conjunction with tricuspid regurgitant velocity (TRV) and plasma N-terminal pro-brain natriuretic peptide (NT-pro BNP), to assess risk of having pulmonary hypertension. Exercise-induced vital sign changes (VSCs) are predictors of clinical outcomes in other diseases. In this study, we assess the predictors and prognostic value of 6MWT VSC in adult SCD patients. Data from a multinational study of SCD patients (Treatment of Pulmonary Hypertension with Sildenafil: walk-PHaSST) were used to calculate the 6MWT VSC. Predictors of VSC were identified by a multivariable analysis, and a survival analysis was conducted by the Cox proportional hazard method. An increase in heart rate was observed in 90% of the 630 SCD adults, 77% of patients had an increase in systolic blood pressure (SBP), and 50% of patients had a decrease in oxygen saturation. TRV (odds ratio [OR] = 1.82, p = .020), absolute reticulocyte count (OR = 1.03, p < .001), and hemoglobin (OR = 0.99, p = .035) predicted oxygen desaturation ≥ 3% during the 6MWT. In the adjusted analysis, SBP increase during the 6MWT was associated with improved survival (hazards ratio = 0.3, 95% confidence interval: 0.1-0.8). Increases in heart rate and blood pressure, as well as oxygen desaturation, are common in adults with SCD during the 6MWT. VSC is associated with markers of anemia and TRV and can be used for risk stratification. Any increase in SBP during the 6MWT was associated with improved survival and may be indicative of a patient's ability to increase stroke volume.


Subject(s)
Anemia, Sickle Cell/therapy , Exercise Therapy , Hypertension, Pulmonary/therapy , Adult , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/physiopathology , Female , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Male , Survival Analysis , Vital Signs , Walking
9.
Lab Chip ; 21(20): 3863-3875, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34585199

ABSTRACT

Anemia affects over 25% of the world's population with the heaviest burden borne by women and children. Genetic hemoglobin (Hb) variants, such as sickle cell disease, are among the major causes of anemia. Anemia and Hb variant are pathologically interrelated and have an overlapping geographical distribution. We present the first point-of-care (POC) platform to perform both anemia detection and Hb variant identification, using a single paper-based electrophoresis test. Feasibility of this new integrated diagnostic approach is demonstrated via testing individuals with anemia and/or sickle cell disease. Hemoglobin level determination is performed by an artificial neural network (ANN) based machine learning algorithm, which achieves a mean absolute error of 0.55 g dL-1 and a bias of -0.10 g dL-1 against the gold standard (95% limits of agreement: 1.5 g dL-1) from Bland-Altman analysis on the test set. Resultant anemia detection is achieved with 100% sensitivity and 92.3% specificity. With the same tests, subjects with sickle cell disease were identified with 100% sensitivity and specificity. Overall, the presented platform enabled, for the first time, integrated anemia detection and hemoglobin variant identification using a single point-of-care test.


Subject(s)
Anemia, Sickle Cell , Electrophoresis, Microchip , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/genetics , Female , Hematologic Tests , Hemoglobins/analysis , Hemoglobins/genetics , Humans , Point-of-Care Systems , Point-of-Care Testing
11.
Lab Chip ; 21(10): 1843-1865, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33881041

ABSTRACT

Anemia, characterized by low blood hemoglobin level, affects about 25% of the world's population with the heaviest burden borne by women and children. Anemia leads to impaired cognitive development in children, as well as high morbidity and early mortality among sufferers. Anemia can be caused by nutritional deficiencies, oncologic treatments and diseases, and infections such as malaria, as well as inherited hemoglobin or red cell disorders. Effective treatments are available for anemia upon early detection and the treatment method is highly dependent on the cause of anemia. There is a need for point-of-care (POC) screening, early diagnosis, and monitoring of anemia, which is currently not widely accessible due to technical challenges and cost, especially in low- and middle-income countries where anemia is most prevalent. This review first introduces the evolution of anemia detection methods followed by their implementation in current commercially available POC anemia diagnostic devices. Then, emerging POC anemia detection technologies leveraging new methods are reviewed. Finally, we highlight the future trends of integrating anemia detection with the diagnosis of relevant underlying disorders to accurately identify specific root causes and to facilitate personalized treatment and care.


Subject(s)
Anemia , Point-of-Care Systems , Anemia/diagnosis , Hemoglobins/analysis , Humans , Mass Screening
13.
Lab Chip ; 21(6): 1036-1048, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33666615

ABSTRACT

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contribute to vaso-occlusion and disease pathophysiology. There are few functional in vitro assays for standardized assessment of RBC-mediated microvascular occlusion. Here, we present the design, fabrication, and clinical testing of the Microfluidic Impedance Red Cell Assay (MIRCA) with embedded capillary network-based micropillar arrays and integrated electrical impedance measurement electrodes to address this need. The micropillar arrays consist of microcapillaries ranging from 12 µm to 3 µm, with each array paired with two sputtered gold electrodes to measure the impedance change of the array before and after sample perfusion through the microfluidic device. We define RBC occlusion index (ROI) and RBC electrical impedance index (REI), which represent the cumulative percentage occlusion and cumulative percentage impedance change, respectively. We demonstrate the promise of MIRCA in two common red cell disorders, SCD and hereditary spherocytosis. We show that the electrical impedance measurement reflects the microvascular occlusion, where REI significantly correlates with ROI that is obtained via high-resolution microscopy imaging of the microcapillary arrays. Further, we show that RBC-mediated microvascular occlusion, represented by ROI and REI, associates with clinical treatment outcomes and correlates with in vivo hemolytic biomarkers, lactate dehydrogenase (LDH) level and absolute reticulocyte count (ARC) in SCD. Impedance measurement obviates the need for high-resolution imaging, enabling future translation of this technology for widespread access, portable and point-of-care use. Our findings suggest that the presented microfluidic design and the integrated electrical impedance measurement provide a reproducible functional test for standardized assessment of RBC-mediated microvascular occlusion. MIRCA and the newly defined REI may serve as an in vitro therapeutic efficacy benchmark for assessing the clinical outcome of emerging RBC-modifying targeted and curative therapies.


Subject(s)
Anemia, Sickle Cell , Microfluidics , Electric Impedance , Erythrocyte Count , Erythrocytes , Humans
14.
Hemoglobin ; 45(1): 56-59, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33588667

ABSTRACT

Venous thromboembolism (VTE) in individuals with sickle cell disease is common and portends a poor prognosis. The role of leukocyte count and its subsets on risk of VTE in sickle cell disease are not known. We conducted a retrospective case-control study and analyzed for leukocyte count at the time of VTE and 3 months prior. Leukocyte and neutrophil counts were elevated at the time of VTE (p = 0.003 and p = 0.0006, respectively) and 3 months prior (p = 0.001 and p = 0.0096, respectively) when compared to controls. Baseline leukocytosis and neutrophilia may be associated with subsequent risk for thrombosis in sickle cell disease.


Subject(s)
Anemia, Sickle Cell , Venous Thromboembolism , Anemia, Sickle Cell/complications , Case-Control Studies , Humans , Leukocytosis , Retrospective Studies , Risk Factors , Venous Thromboembolism/etiology
15.
Microcirculation ; 28(2): e12662, 2021 02.
Article in English | MEDLINE | ID: mdl-33025653

ABSTRACT

OBJECTIVES: We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS: Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS: We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS: We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.


Subject(s)
Anemia, Sickle Cell , Hydroxyurea , Anemia, Sickle Cell/drug therapy , Erythrocytes , Hemoglobins , Humans , Hydroxyurea/therapeutic use , Microcirculation , Microfluidics , Phenotype
16.
Blood Adv ; 4(15): 3688-3698, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32777069

ABSTRACT

Sickle cell disease (SCD), which afflicts 100 000 Americans, as well as millions worldwide, is associated with anemia, lifelong morbidity, and early mortality. Abnormal adhesion of sickle red blood cells (RBCs) to activated vascular endothelium may contribute acutely to the initiation of painful vaso-occlusive crises and chronically to endothelial damage in SCD. Sickle RBCs adhere to activated endothelium through several adhesion mechanisms. In this study, using whole blood from 17 people with heterozygous SCD (HbS variant) and 55 people with homozygous SCD (HbSS) analyzed in an in vitro microfluidic assay, we present evidence for the adhesion of sickle RBCs to immobilized recombinant intercellular adhesion molecule 1 (ICAM-1). We show that sickle RBC adhesion to ICAM-1 in vitro is associated with evidence of hemolysis in vivo, marked by elevated lactate dehydrogenase levels, reticulocytosis, and lower fetal hemoglobin levels. Further, RBC adhesion to ICAM-1 correlates with a history of intracardiac or intrapulmonary right-to-left shunts. Studies of potential ICAM-1 ligands on RBC membranes revealed that RBC-ICAM-1 interactions were mediated by fibrinogen bound to the RBC membrane. We describe, for the first time, RBC rolling behavior on ICAM-1 under high shear rates. Our results suggest that firm adhesion of sickle RBCs to ICAM-1 most likely occurs in postcapillary venules at low physiological shear rates, which is facilitated by initial rolling in high shear regions (eg, capillaries). Inhibition of RBC and ICAM-1 interactions may constitute a novel therapeutic target in SCD.


Subject(s)
Anemia, Sickle Cell , Intercellular Adhesion Molecule-1 , Cell Adhesion , Erythrocytes , Fibrinogen , Humans , Intercellular Adhesion Molecule-1/genetics
17.
Exp Hematol ; 89: 43-54.e2, 2020 09.
Article in English | MEDLINE | ID: mdl-32750404

ABSTRACT

Steady-state erythropoiesis generates new erythrocytes at a constant rate, and it has enormous productive capacity. This production is balanced by the removal of senescent erythrocytes by macrophages in the spleen and liver. Erythroid homeostasis is highly regulated to maintain sufficient erythrocytes for efficient oxygen delivery to the tissues, while avoiding viscosity problems associated with overproduction. However, there are times when this constant production of erythrocytes is inhibited or is inadequate; at these times, erythroid output is increased to compensate for the loss of production. In some cases, increased steady-state erythropoiesis can offset the loss of erythrocytes but, in response to inflammation caused by infection or tissue damage, steady-state erythropoiesis is inhibited. To maintain homeostasis under these conditions, an alternative stress erythropoiesis pathway is activated. Emerging data suggest that the bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis pathway is integrated into the inflammatory response and generates a bolus of new erythrocytes that maintain homeostasis until steady-state erythropoiesis can resume. In this perspective, we define the mechanisms that generate new erythrocytes when steady-state erythropoiesis is impaired and discuss experimental models to study human stress erythropoiesis.


Subject(s)
Bone Morphogenetic Protein 4/genetics , Erythrocytes/cytology , Erythroid Precursor Cells/cytology , Erythropoiesis/genetics , Macrophages/cytology , Stress, Physiological/genetics , Animals , Bone Morphogenetic Protein 4/immunology , Cellular Senescence/immunology , Cytokines/genetics , Cytokines/immunology , Erythrocytes/immunology , Erythroid Precursor Cells/immunology , Erythropoiesis/immunology , Gene Expression Regulation , Humans , Inflammation , Liver/cytology , Liver/immunology , Macrophages/immunology , Mice , Models, Biological , Phagocytosis , Spleen/cytology , Spleen/immunology , Stress, Physiological/immunology
18.
Am J Hematol ; 95(11): 1246-1256, 2020 11.
Article in English | MEDLINE | ID: mdl-32656816

ABSTRACT

Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the ß-globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.


Subject(s)
Anemia, Sickle Cell/blood , Blood Viscosity , Cell Adhesion , Erythrocytes, Abnormal/metabolism , Biomarkers/blood , Female , Humans , Male
19.
Lab Chip ; 20(12): 2086-2099, 2020 06 21.
Article in English | MEDLINE | ID: mdl-32427268

ABSTRACT

Abnormal red blood cell (RBC) deformability contributes to hemolysis, thrombophilia, inflammation, and microvascular occlusion in various circulatory diseases. A quantitative and objective assessment of microvascular occlusion mediated by RBCs with abnormal deformability would provide valuable insights into disease pathogenesis and therapeutic strategies. To that end, we present a new functional microfluidic assay, OcclusionChip, which mimics two key architectural features of the capillary bed in the circulatory system. First, the embedded micropillar arrays within the microchannel form gradient microcapillaries, from 20 µm down to 4 µm, which mimic microcapillary networks. These precisely engineered microcapillaries retain RBCs with impaired deformability, such that stiffer RBCs occlude the wider upstream microcapillaries, while less stiff RBCs occlude the finer downstream microcapillaries. Second, the micropillar arrays are coupled with two side passageways, which mimic the arteriovenous anastomoses that act as shunts in the capillary bed. These side microfluidic anastomoses prevent microchannel blockage, and enable versatility and testing of clinical blood samples at near-physiologic hematocrit levels. Further, we define a new generalizable parameter, Occlusion Index (OI), which is an indicative index of RBC deformability and the associated microcapillary occlusion. We demonstrate the promise of OcclusionChip in diverse pathophysiological scenarios that result in impaired RBC deformability, including mercury toxin, storage lesion, end-stage renal disease, malaria, and sickle cell disease (SCD). Hydroxyurea therapy improves RBC deformability and increases fetal hemoglobin (HbF%) in some, but not all, treated patients with SCD. HbF% greater than 8.6% has been shown to improve clinical outcomes in SCD. We show that OI associates with HbF% in 16 subjects with SCD. Subjects with higher HbF levels (HbF > 8.6%) displayed significantly lower OI (0.88% ± 0.10%, N = 6) compared with those with lower HbF levels (HbF ≤ 8.6%) who displayed greater OI (3.18% ± 0.34%, N = 10, p < 0.001). Moreover, hypoxic OcclusionChip assay revealed a significant correlation between hypoxic OI and subject-specific sickle hemoglobin (HbS) level in SCD. OcclusionChip enables versatile in vitro assessment of microvascular occlusion mediated by RBCs in a wide range of clinical conditions. OI may serve as a new parameter to evaluate the efficacy of treatments improving RBC deformability, including hemoglobin modifying drugs, anti-sickling agents, and genetic therapies.


Subject(s)
Anemia, Sickle Cell , Microfluidics , Erythrocyte Deformability , Erythrocytes , Hemoglobins , Humans
20.
Br J Haematol ; 190(4): 599-609, 2020 08.
Article in English | MEDLINE | ID: mdl-32346864

ABSTRACT

Many hypotheses have been proposed to explain how a glutamate to valine substitution in sickle haemoglobin (HbS) can cause sickle cell disease (SCD). We propose and document a new mechanism in which elevated tyrosine phosphorylation of Band 3 initiates sequelae that cause vaso-occlusion and the symptoms of SCD. In this mechanism, denaturation of HbS and release of heme generate intracellular oxidants which cause inhibition of erythrocyte tyrosine phosphatases, thus permitting constitutive tyrosine phosphorylation of Band 3. This phosphorylation in turn induces dissociation of the spectrin-actin cytoskeleton from the membrane, leading to membrane weakening, discharge of membrane-derived microparticles (which initiate the coagulation cascade) and release of cell-free HbS (which consumes nitric oxide) and activates the endothelium to express adhesion receptors). These processes promote vaso-occlusive events which cause SCD. We further show that inhibitors of Syk tyrosine kinase block Band 3 tyrosine phosphorylation, prevent release of cell-free Hb, inhibit discharge of membrane-derived microparticles, increase sickle cell deformability, reduce sickle cell adhesion to human endothelial cells, and enhance sickle cell flow through microcapillaries. In view of reports that imatinib (a Syk inhibitor) successfully treats symptoms of sickle cell disease, we suggest that Syk tyrosine kinase inhibitors warrant repurposing as potential treatments for SCD.


Subject(s)
Anemia, Sickle Cell/drug therapy , Anion Exchange Protein 1, Erythrocyte/metabolism , Protein Processing, Post-Translational/drug effects , Anemia, Sickle Cell/blood , Cell Adhesion/drug effects , Cell-Derived Microparticles/chemistry , Drug Evaluation, Preclinical , Endothelium, Vascular/metabolism , Erythrocyte Deformability/drug effects , Erythrocyte Membrane/drug effects , Erythrocytes, Abnormal/drug effects , Erythrocytes, Abnormal/metabolism , Hemoglobin, Sickle/analysis , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Oxidative Stress , Oxygen/blood , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Plasma , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Sickle Cell Trait/blood , beta-Thalassemia/blood
SELECTION OF CITATIONS
SEARCH DETAIL