Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Artif Intell Med ; 150: 102810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553149

ABSTRACT

Dysphonia is one of the early symptoms of Parkinson's disease (PD). Most existing methods use feature selection methods to find the optimal subset of voice features for all PD patients. Few have considered the heterogeneity between patients, which implies the need to provide specific prediction models for different patients. However, building the specific model faces the challenge of small sample size, which makes it lack generalization ability. Instance transfer is an effective way to solve this problem. Therefore, this paper proposes a patient-specific game-based transfer (PSGT) method for PD severity prediction. First, a selection mechanism is used to select PD patients with similar disease trends to the target patient from the source domain, which reduces the risk of negative transfer. Then, the contribution of the transferred subjects and their instances to the disease estimation of the target subject is fairly evaluated by the Shapley value, which improves the interpretability of the method. Next, the proportion of valid instances in the transferred subjects is determined, and the instances with higher contribution are transferred to further reduce the difference between the transferred instance subset and the target subject. Finally, the selected subset of instances is added to the training set of the target subject, and the extended data is fed into the random forest to improve the performance of the method. Parkinson's telemonitoring dataset is used to evaluate the feasibility and effectiveness. The mean values of mean absolute error, root mean square error, and volatility obtained by predicting motor-UPDRS and total-UPDRS for target patients are 1.59, 1.95, 1.56 and 1.98, 2.54, 1.94, respectively. Experiment results show that the PSGT has better performance in both prediction error and stability over compared methods.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Machine Learning , Severity of Illness Index
2.
Nat Biotechnol ; 40(4): 480-487, 2022 04.
Article in English | MEDLINE | ID: mdl-34373643

ABSTRACT

Remote health assessments that gather real-world data (RWD) outside clinic settings require a clear understanding of appropriate methods for data collection, quality assessment, analysis and interpretation. Here we examine the performance and limitations of smartphones in collecting RWD in the remote mPower observational study of Parkinson's disease (PD). Within the first 6 months of study commencement, 960 participants had enrolled and performed at least five self-administered active PD symptom assessments (speeded tapping, gait/balance, phonation or memory). Task performance, especially speeded tapping, was predictive of self-reported PD status (area under the receiver operating characteristic curve (AUC) = 0.8) and correlated with in-clinic evaluation of disease severity (r = 0.71; P < 1.8 × 10-6) when compared with motor Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Although remote assessment requires careful consideration for accurate interpretation of RWD, our results support the use of smartphones and wearables in objective and personalized disease assessments.


Subject(s)
Parkinson Disease , Smartphone , Gait , Humans , Movement , Parkinson Disease/diagnosis , Severity of Illness Index
3.
J Med Internet Res ; 23(10): e26305, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34665148

ABSTRACT

BACKGROUND: Access to neurological care for Parkinson disease (PD) is a rare privilege for millions of people worldwide, especially in resource-limited countries. In 2013, there were just 1200 neurologists in India for a population of 1.3 billion people; in Africa, the average population per neurologist exceeds 3.3 million people. In contrast, 60,000 people receive a diagnosis of PD every year in the United States alone, and similar patterns of rising PD cases-fueled mostly by environmental pollution and an aging population-can be seen worldwide. The current projection of more than 12 million patients with PD worldwide by 2040 is only part of the picture given that more than 20% of patients with PD remain undiagnosed. Timely diagnosis and frequent assessment are key to ensure timely and appropriate medical intervention, thus improving the quality of life of patients with PD. OBJECTIVE: In this paper, we propose a web-based framework that can help anyone anywhere around the world record a short speech task and analyze the recorded data to screen for PD. METHODS: We collected data from 726 unique participants (PD: 262/726, 36.1% were women; non-PD: 464/726, 63.9% were women; average age 61 years) from all over the United States and beyond. A small portion of the data (approximately 54/726, 7.4%) was collected in a laboratory setting to compare the performance of the models trained with noisy home environment data against high-quality laboratory-environment data. The participants were instructed to utter a popular pangram containing all the letters in the English alphabet, "the quick brown fox jumps over the lazy dog." We extracted both standard acoustic features (mel-frequency cepstral coefficients and jitter and shimmer variants) and deep learning-based embedding features from the speech data. Using these features, we trained several machine learning algorithms. We also applied model interpretation techniques such as Shapley additive explanations to ascertain the importance of each feature in determining the model's output. RESULTS: We achieved an area under the curve of 0.753 for determining the presence of self-reported PD by modeling the standard acoustic features through the XGBoost-a gradient-boosted decision tree model. Further analysis revealed that the widely used mel-frequency cepstral coefficient features and a subset of previously validated dysphonia features designed for detecting PD from a verbal phonation task (pronouncing "ahh") influence the model's decision the most. CONCLUSIONS: Our model performed equally well on data collected in a controlled laboratory environment and in the wild across different gender and age groups. Using this tool, we can collect data from almost anyone anywhere with an audio-enabled device and help the participants screen for PD remotely, contributing to equity and access in neurological care.


Subject(s)
Dysphonia , Parkinson Disease , Aged , Humans , Internet , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , Quality of Life , Speech
4.
J Parkinsons Dis ; 11(s1): S49-S53, 2021.
Article in English | MEDLINE | ID: mdl-33814462

ABSTRACT

Parkinson's disease is a complex and heterogeneous condition, and there are many gaps in the medical community's scientific and practical understanding of the disease. Closing these gaps relies on objective data about symptoms and signs, collected over long durations. Smartphones contain sensor devices which can be used to remotely capture behavioral signals. From these signals, computational algorithms can distill metrics of symptom severity and progression. This brief review introduces the main concepts of the discipline, addressing the experimental, hardware and software logistics, and computational analysis. The article finishes with an exploration of future prospects for the technology.


Subject(s)
Monitoring, Physiologic , Parkinson Disease , Smartphone , Humans , Monitoring, Physiologic/methods , Parkinson Disease/physiopathology , Software
5.
IEEE Access ; 9: 11024-11036, 2021.
Article in English | MEDLINE | ID: mdl-33495722

ABSTRACT

Telemonitoring of Parkinson's Disease (PD) has attracted considerable research interest because of its potential to make a lasting, positive impact on the life of patients and their carers. Purpose-built devices have been developed that record various signals which can be associated with average PD symptom severity, as quantified on standard clinical metrics such as the Unified Parkinson's Disease Rating Scale (UPDRS). Speech signals are particularly promising in this regard, because they can be easily recorded without the use of expensive, dedicated hardware. Previous studies have demonstrated replication of UPDRS to within less than 2 points of a clinical raters' assessment of symptom severity, using high-quality speech signals collected using dedicated telemonitoring hardware. Here, we investigate the potential of using the standard voice-over-GSM (2G) or UMTS (3G) cellular mobile telephone networks for PD telemonitoring, networks that, together, have greater than 5 billion subscribers worldwide. We test the robustness of this approach using a simulated noisy mobile communication network over which speech signals are transmitted, and approximately 6000 recordings from 42 PD subjects. We show that UPDRS can be estimated to within less than 3.5 points difference from the clinical raters' assessment, which is clinically useful given that the inter-rater variability for UPDRS can be as high as 4-5 UPDRS points. This provides compelling evidence that the existing voice telephone network has potential towards facilitating inexpensive, mass-scale PD symptom telemonitoring applications.

6.
IEEE J Biomed Health Inform ; 25(6): 2293-2304, 2021 06.
Article in English | MEDLINE | ID: mdl-33180738

ABSTRACT

Passive monitoring in daily life may provide valuable insights into a person's health throughout the day. Wearable sensor devices play a key role in enabling such monitoring in a non-obtrusive fashion. However, sensor data collected in daily life reflect multiple health and behavior-related factors together. This creates the need for a structured principled analysis to produce reliable and interpretable predictions that can be used to support clinical diagnosis and treatment. In this work we develop a principled modelling approach for free-living gait (walking) analysis. Gait is a promising target for non-obtrusive monitoring because it is common and indicative of many different movement disorders such as Parkinson's disease (PD), yet its analysis has largely been limited to experimentally controlled lab settings. To locate and characterize stationary gait segments in free-living using accelerometers, we present an unsupervised probabilistic framework designed to segment signals into differing gait and non-gait patterns. We evaluate the approach using a new video-referenced dataset including 25 PD patients with motor fluctuations and 25 age-matched controls, performing unscripted daily living activities in and around their own houses. Using this dataset, we demonstrate the framework's ability to detect gait and predict medication induced fluctuations in PD patients based on free-living gait. We show that our approach is robust to varying sensor locations, including the wrist, ankle, trouser pocket and lower back.


Subject(s)
Parkinson Disease , Wearable Electronic Devices , Activities of Daily Living , Gait , Humans , Parkinson Disease/diagnosis , Walking
7.
Front Aging Neurosci ; 12: 553635, 2020.
Article in English | MEDLINE | ID: mdl-33132895

ABSTRACT

Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.

8.
J Med Internet Res ; 22(10): e19068, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33034562

ABSTRACT

BACKGROUND: Wearable sensors have been used successfully to characterize bradykinetic gait in patients with Parkinson disease (PD), but most studies to date have been conducted in highly controlled laboratory environments. OBJECTIVE: This paper aims to assess whether sensor-based analysis of real-life gait can be used to objectively and remotely monitor motor fluctuations in PD. METHODS: The Parkinson@Home validation study provides a new reference data set for the development of digital biomarkers to monitor persons with PD in daily life. Specifically, a group of 25 patients with PD with motor fluctuations and 25 age-matched controls performed unscripted daily activities in and around their homes for at least one hour while being recorded on video. Patients with PD did this twice: once after overnight withdrawal of dopaminergic medication and again 1 hour after medication intake. Participants wore sensors on both wrists and ankles, on the lower back, and in the front pants pocket, capturing movement and contextual data. Gait segments of 25 seconds were extracted from accelerometer signals based on manual video annotations. The power spectral density of each segment and device was estimated using Welch's method, from which the total power in the 0.5- to 10-Hz band, width of the dominant frequency, and cadence were derived. The ability to discriminate between before and after medication intake and between patients with PD and controls was evaluated using leave-one-subject-out nested cross-validation. RESULTS: From 18 patients with PD (11 men; median age 65 years) and 24 controls (13 men; median age 68 years), ≥10 gait segments were available. Using logistic LASSO (least absolute shrinkage and selection operator) regression, we classified whether the unscripted gait segments occurred before or after medication intake, with mean area under the receiver operator curves (AUCs) varying between 0.70 (ankle of least affected side, 95% CI 0.60-0.81) and 0.82 (ankle of most affected side, 95% CI 0.72-0.92) across sensor locations. Combining all sensor locations did not significantly improve classification (AUC 0.84, 95% CI 0.75-0.93). Of all signal properties, the total power in the 0.5- to 10-Hz band was most responsive to dopaminergic medication. Discriminating between patients with PD and controls was generally more difficult (AUC of all sensor locations combined: 0.76, 95% CI 0.62-0.90). The video recordings revealed that the positioning of the hands during real-life gait had a substantial impact on the power spectral density of both the wrist and pants pocket sensor. CONCLUSIONS: We present a new video-referenced data set that includes unscripted activities in and around the participants' homes. Using this data set, we show the feasibility of using sensor-based analysis of real-life gait to monitor motor fluctuations with a single sensor location. Future work may assess the value of contextual sensors to control for real-world confounders.


Subject(s)
Gait/physiology , Monitoring, Physiologic/methods , Motor Disorders/diagnosis , Parkinson Disease/complications , Wearable Electronic Devices/standards , Aged , Female , Humans , Male , Motor Disorders/etiology
9.
J Parkinsons Dis ; 10(3): 855-873, 2020.
Article in English | MEDLINE | ID: mdl-32444562

ABSTRACT

Phenotype is the set of observable traits of an organism or condition. While advances in genetics, imaging, and molecular biology have improved our understanding of the underlying biology of Parkinson's disease (PD), clinical phenotyping of PD still relies primarily on history and physical examination. These subjective, episodic, categorical assessments are valuable for diagnosis and care but have left gaps in our understanding of the PD phenotype. Sensors can provide objective, continuous, real-world data about the PD clinical phenotype, increase our knowledge of its pathology, enhance evaluation of therapies, and ultimately, improve patient care. In this paper, we explore the concept of deep phenotyping-the comprehensive assessment of a condition using multiple clinical, biological, genetic, imaging, and sensor-based tools-for PD. We discuss the rationale for, outline current approaches to, identify benefits and limitations of, and consider future directions for deep clinical phenotyping.


Subject(s)
Gait/physiology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Phenotype , Autonomic Nervous System/physiopathology , Forecasting , Humans , Sleep/physiology
10.
Sensors (Basel) ; 20(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023966

ABSTRACT

The growth of urban areas in recent years has motivated a large amount of new sensor applications in smart cities. At the centre of many new applications stands the goal of gaining insights into human activity. Scalable monitoring of urban environments can facilitate better informed city planning, efficient security, regular transport and commerce. A large part of monitoring capabilities have already been deployed; however, most rely on expensive motion imagery and privacy invading video cameras. It is possible to use a low-cost sensor alternative, which enables deep understanding of population behaviour such as the Global Positioning System (GPS) data. However, the automated analysis of such low dimensional sensor data, requires new flexible and structured techniques that can describe the generative distribution and time dynamics of the observation data, while accounting for external contextual influences such as time of day or the difference between weekend/weekday trends. In this paper, we propose a novel time series analysis technique that allows for multiple different transition matrices depending on the data's contextual realisations all following shared adaptive observational models that govern the global distribution of the data given a latent sequence. The proposed approach, which we name Adaptive Input Hidden Markov model (AI-HMM) is tested on two datasets from different sensor types: GPS trajectories of taxis and derived vehicle counts in populated areas. We demonstrate that our model can group different categories of behavioural trends and identify time specific anomalies.


Subject(s)
Behavior/physiology , Human Activities , Models, Statistical , Pattern Recognition, Automated/methods , Cities , Geographic Information Systems/instrumentation , Humans , Motion
11.
BMC Rheumatol ; 3: 41, 2019.
Article in English | MEDLINE | ID: mdl-31660533

ABSTRACT

BACKGROUND: The idiopathic inflammatory myopathies (IIMs) are a group of rare conditions characterised by muscle inflammation (myositis). Accurate disease activity assessment is vital in both clinical and research settings, however, current available methods lack ability to quantify associated variation of physical activity, an important consequence of myositis.This study aims to review studies that have collected accelerometer-derived physical activity data in IIM populations, and to investigate if these studies identified associations between physical and myositis disease activity. METHODS: A narrative review was conducted to identify original articles that have collected accelerometer-derived physical activity data in IIM populations. The following databases were searched from February 2000 until February 2019: Medline via PubMed, Embase via OVID and Scopus. RESULTS: Of the 297 publications screened, eight studies describing accelerometer use in 181 IIM cases were identified. Seven out of the eight studies investigated juvenile dermatomyositis (JDM) populations and only one reported on an adult-onset population. Population sizes, disease duration, accelerometer devices used, body placement sites, and study duration varied between each study.Accelerometer-derived physical activity levels were reduced in IIM cohorts, compared to healthy controls, and studies reported improvement of physical activity levels following exercise programme interventions, thus demonstrating efficacy.Higher levels of accelerometer-derived physical activity measurements were associated with shorter JDM disease duration, current glucocorticoid use and lower serum creatine kinase. However, no clear association between muscle strength and accelerometer-derived physical activity measures was identified. CONCLUSIONS: The use of accelerometer-derived physical activity in IIM research is in its infancy. Whilst knowledge is currently limited to small studies, the opportunities are promising and future research in this area has the potential to improve disease activity assessment for clinical and research applications.

12.
Nat Commun ; 10(1): 3503, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409809

ABSTRACT

Excessive daytime sleepiness (EDS) affects 10-20% of the population and is associated with substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). However, individual daytime sleepiness signals vary in their associations with objective short vs long sleep, and with markers of sleep continuity. The 42 sleepiness variants primarily cluster into two predominant composite biological subtypes - sleep propensity and sleep fragmentation. Shared genetic links are also seen with obesity, coronary heart disease, psychiatric diseases, cognitive traits and reproductive ageing.


Subject(s)
Genetic Loci , Sleep/genetics , Sleepiness , Adult , Age Factors , Aged , Datasets as Topic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Polysomnography , Self Report/statistics & numerical data , Sex Factors , Young Adult
13.
Nat Commun ; 10(1): 1100, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846698

ABSTRACT

Sleep is an essential state of decreased activity and alertness but molecular factors regulating sleep duration remain unknown. Through genome-wide association analysis in 446,118 adults of European ancestry from the UK Biobank, we identify 78 loci for self-reported habitual sleep duration (p < 5 × 10-8; 43 loci at p < 6 × 10-9). Replication is observed for PAX8, VRK2, and FBXL12/UBL5/PIN1 loci in the CHARGE study (n = 47,180; p < 6.3 × 10-4), and 55 signals show sign-concordant effects. The 78 loci further associate with accelerometer-derived sleep duration, daytime inactivity, sleep efficiency and number of sleep bouts in secondary analysis (n = 85,499). Loci are enriched for pathways including striatum and subpallium development, mechanosensory response, dopamine binding, synaptic neurotransmission and plasticity, among others. Genetic correlation indicates shared links with anthropometric, cognitive, metabolic, and psychiatric traits and two-sample Mendelian randomization highlights a bidirectional causal link with schizophrenia. This work provides insights into the genetic basis for inter-individual variation in sleep duration implicating multiple biological pathways.


Subject(s)
Genetic Loci , Sleep/genetics , Accelerometry , Adult , Aged , Female , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Schizophrenia/physiopathology , Self Report , Sleep/physiology , United Kingdom , White People
14.
Nat Genet ; 51(3): 387-393, 2019 03.
Article in English | MEDLINE | ID: mdl-30804566

ABSTRACT

Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. The underlying pathophysiological processes and causal relationships of insomnia with disease are poorly understood. Here we identified 57 loci for self-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmed their effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923 cases and 47,610 controls), physician-diagnosed insomnia in the Partners Biobank (n = 2,217 cases and 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, skeletal muscle, and adrenal glands. Evidence of shared genetic factors was found between frequent insomnia symptoms and restless legs syndrome, aging, and cardiometabolic, behavioral, psychiatric, and reproductive traits. Evidence was found for a possible causal link between insomnia symptoms and coronary artery disease, depressive symptoms, and subjective well-being.


Subject(s)
Genetic Predisposition to Disease/genetics , Sleep Initiation and Maintenance Disorders/genetics , Sleep/genetics , Adult , Aged , Case-Control Studies , Female , Gene Expression/genetics , Humans , Male , Middle Aged , Proteolysis , Self Report , Ubiquitin/genetics
15.
JMIR Res Protoc ; 8(1): e10238, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30672745

ABSTRACT

BACKGROUND: The Knee OsteoArthritis, Linking Activity and Pain (KOALAP) study is the first to test the feasibility of using consumer-grade cellular smartwatches for health care research. OBJECTIVE: The overall aim was to investigate the feasibility of using consumer-grade cellular smartwatches as a novel tool to capture data on pain (multiple times a day) and physical activity (continuously) in patients with knee osteoarthritis. Additionally, KOALAP aimed to investigate smartwatch sensor data quality and assess whether engagement, acceptability, and user experience are sufficient for future large-scale observational and interventional studies. METHODS: A total of 26 participants with self-diagnosed knee osteoarthritis were recruited in September 2017. All participants were aged 50 years or over and either lived in or were willing to travel to the Greater Manchester area. Participants received a smartwatch (Huawei Watch 2) with a bespoke app that collected patient-reported outcomes via questionnaires and continuous watch sensor data. All data were collected daily for 90 days. Additional data were collected through interviews (at baseline and follow-up) and baseline and end-of-study questionnaires. This study underwent full review by the University of Manchester Research Ethics Committee (#0165) and University Information Governance (#IGRR000060). For qualitative data analysis, a system-level security policy was developed in collaboration with the University Information Governance Office. Additionally, the project underwent an internal review process at Google, including separate reviews of accessibility, product engineering, privacy, security, legal, and protection regulation compliance. RESULTS: Participants were recruited in September 2017. Data collection via the watches was completed in January 2018. Collection of qualitative data through patient interviews is still ongoing. Data analysis will commence when all data are collected; results are expected in 2019. CONCLUSIONS: KOALAP is the first health study to use consumer cellular smartwatches to collect self-reported symptoms alongside sensor data for musculoskeletal disorders. The results of this study will be used to inform the design of future mobile health studies. Results for feasibility and participant motivations will inform future researchers whether or under which conditions cellular smartwatches are a useful tool to collect patient-reported outcomes alongside passively measured patient behavior. The exploration of associations between self-reported symptoms at different moments will contribute to our understanding of whether it may be valuable to collect symptom data more frequently. Sensor data-quality measurements will indicate whether cellular smartwatch usage is feasible for obtaining sensor data. Methods for data-quality assessment and data-processing methods may be reusable, although generalizability to other clinical areas should be further investigated. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/10238.

16.
Digit Biomark ; 3(3): 116-132, 2019.
Article in English | MEDLINE | ID: mdl-32175520

ABSTRACT

Digital health technologies (smartphones, smartwatches, and other body-worn sensors) can act as novel tools to aid in the diagnosis and remote objective monitoring of an individual's disease symptoms, both in clinical care and in research. Nonetheless, such digital health technologies have yet to widely demonstrate value in clinical research due to insufficient data interpretability and lack of regulatory acceptance. Metadata, i.e., data that accompany and describe the primary data, can be utilized to better understand the context of the sensor data and can assist in data management, data sharing, and subsequent data analysis. The need for data and metadata standards for digital health technologies has been raised in academic and industry research communities and has also been noted by regulatory authorities. Therefore, to address this unmet need, we here propose a metadata set that reflects regulatory guidelines and that can serve as a conceptual map to (1) inform researchers on the metadata they should collect in digital health studies, aiming to increase the interpretability and exchangeability of their data, and (2) direct standard development organizations on how to extend their existing standards to incorporate digital health technologies. The proposed metadata set is informed by existing standards pertaining to clinical trials and medical devices, in addition to existing schemas that have supported digital health technology studies. We illustrate this specifically in the context of Parkinson's disease, as a model for a wide range of other chronic conditions for which remote monitoring would be useful in both care and science. We invite the scientific and clinical research communities to apply the proposed metadata set to ongoing and planned research. Where the proposed metadata fall short, we ask users to contribute to its ongoing revision so that an adequate degree of consensus can be maintained in a rapidly evolving technology landscape.

17.
J Parkinsons Dis ; 8(4): 503-510, 2018.
Article in English | MEDLINE | ID: mdl-30248062

ABSTRACT

We investigate the potential association between leucine-rich repeat kinase 2 (LRRK2) mutations and voice. Sustained phonations ('aaah' sounds) were recorded from 7 individuals with LRRK2-associated Parkinson's disease (PD), 17 participants with idiopathic PD (iPD), 20 non-manifesting LRRK2-mutation carriers, 25 related non-carriers, and 26 controls. In distinguishing LRRK2-associated PD and iPD, the mean sensitivity was 95.4% (SD 17.8%) and mean specificity was 89.6% (SD 26.5%). Voice features for non-manifesting carriers, related non-carriers, and controls were much less discriminatory. Vocal deficits in LRRK2-associated PD may be different than those in iPD. These preliminary results warrant longitudinal analyses and replication in larger cohorts.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/diagnosis , Voice/physiology , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Humans , Male , Middle Aged , Mutation , Parkinson Disease/genetics , Parkinson Disease/physiopathology
18.
Neurology ; 91(16): e1528-e1538, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30232246

ABSTRACT

OBJECTIVE: We sought to identify motor features that would allow the delineation of individuals with sleep study-confirmed idiopathic REM sleep behavior disorder (iRBD) from controls and Parkinson disease (PD) using a customized smartphone application. METHODS: A total of 334 PD, 104 iRBD, and 84 control participants performed 7 tasks to evaluate voice, balance, gait, finger tapping, reaction time, rest tremor, and postural tremor. Smartphone recordings were collected both in clinic and at home under noncontrolled conditions over several days. All participants underwent detailed parallel in-clinic assessments. Using only the smartphone sensor recordings, we sought to (1) discriminate whether the participant had iRBD or PD and (2) identify which of the above 7 motor tasks were most salient in distinguishing groups. RESULTS: Statistically significant differences based on these 7 tasks were observed between the 3 groups. For the 3 pairwise discriminatory comparisons, (1) controls vs iRBD, (2) controls vs PD, and (3) iRBD vs PD, the mean sensitivity and specificity values ranged from 84.6% to 91.9%. Postural tremor, rest tremor, and voice were the most discriminatory tasks overall, whereas the reaction time was least discriminatory. CONCLUSIONS: Prodromal forms of PD include the sleep disorder iRBD, where subtle motor impairment can be detected using clinician-based rating scales (e.g., Unified Parkinson's Disease Rating Scale), which may lack the sensitivity to detect and track granular change. Consumer grade smartphones can be used to accurately separate not only iRBD from controls but also iRBD from PD participants, providing a growing consensus for the utility of digital biomarkers in early and prodromal PD.


Subject(s)
Parkinson Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Smartphone , Aged , Female , Fingers/physiopathology , Gait , Humans , Male , Middle Aged , Parkinson Disease/psychology , Postural Balance , Psychomotor Performance , REM Sleep Behavior Disorder/psychology , Reaction Time , Reproducibility of Results , Sensitivity and Specificity , Tremor/diagnosis , Tremor/psychology , Voice
19.
Sensors (Basel) ; 18(4)2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29659528

ABSTRACT

The use of wearable sensing technology for objective, non-invasive and remote clinimetric testing of symptoms has considerable potential. However, the accuracy achievable with such technology is highly reliant on separating the useful from irrelevant sensor data. Monitoring patient symptoms using digital sensors outside of controlled, clinical lab settings creates a variety of practical challenges, such as recording unexpected user behaviors. These behaviors often violate the assumptions of clinimetric testing protocols, where these protocols are designed to probe for specific symptoms. Such violations are frequent outside the lab and affect the accuracy of the subsequent data analysis and scientific conclusions. To address these problems, we report on a unified algorithmic framework for automated sensor data quality control, which can identify those parts of the sensor data that are sufficiently reliable for further analysis. Combining both parametric and nonparametric signal processing and machine learning techniques, we demonstrate that across 100 subjects and 300 clinimetric tests from three different types of behavioral clinimetric protocols, the system shows an average segmentation accuracy of around 90%. By extracting reliable sensor data, it is possible to strip the data of confounding factors in the environment that may threaten reproducibility and replicability.

20.
Gait Posture ; 62: 388-394, 2018 05.
Article in English | MEDLINE | ID: mdl-29627498

ABSTRACT

BACKGROUND: People with PD (PWP) have an increased risk of becoming inactive. Wearable sensors can provide insights into daily physical activity and walking patterns. RESEARCH QUESTIONS: (1) Is the severity of motor fluctuations associated with sensor-derived average daily walking quantity? (2) Is the severity of motor fluctuations associated with the amount of change in sensor-derived walking quantity after levodopa intake? METHODS: 304 Dutch PWP from the Parkinson@Home study were included. At baseline, all participants received a clinical examination. During the follow-up period (median: 97 days; 25-Interquartile range-IQR: 91 days, 75-IQR: 188 days), participants used the Fox Wearable Companion app and streamed smartwatch accelerometer data to a cloud platform. The first research question was assessed by linear regression on the sensor-derived mean time spent walking/day with the severity of fluctuations (MDS-UPDRS item 4.4) as independent variable, controlled for age and MDS-UPDRS part-III score. The second research question was assessed by linear regression on the sensor-derived mean post-levodopa walking quantity, with the sensor-derived mean pre-levodopa walking quantity and severity of fluctuations as independent variables, controlled for mean time spent walking per day, age and MDS-UPDRS part-III score. RESULTS: PWP spent most time walking between 8am and 1pm, summing up to 72 ±â€¯39 (mean ±â€¯standard deviation) minutes of walking/day. The severity of motor fluctuations did not influence the mean time spent walking (B = 2.4 ±â€¯1.9, p = 0.20), but higher age (B = -1.3 ±â€¯0.3, p = < 0.001) and greater severity of motor symptoms (B = -0.6 ±â€¯0.2, p < 0.001) was associated with less time spent walking (F(3216) = 14.6, p < .001, R2 = .17). The severity of fluctuations was not associated with the amount of change in time spent walking in relation to levodopa intake in any part of the day. SIGNIFICANCE: Analysis of sensor-derived gait quantity suggests that the severity of motor fluctuations is not associated with changes in real-life walking patterns in mildly to moderate affected PWP.


Subject(s)
Gait/physiology , Motor Activity/physiology , Parkinson Disease/physiopathology , Walking/physiology , Accelerometry , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnosis , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL