Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 110: 11-18, 2021 02.
Article in English | MEDLINE | ID: mdl-32571625

ABSTRACT

The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.


Subject(s)
Body Patterning/genetics , Cilia/metabolism , Gene Expression Regulation, Developmental , Mechanotransduction, Cellular/genetics , Mesoderm/metabolism , Animals , Cilia/ultrastructure , Embryo, Mammalian , Feedback, Physiological , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Left-Right Determination Factors/genetics , Left-Right Determination Factors/metabolism , Mesoderm/growth & development , Mesoderm/ultrastructure , Mice , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt3 Protein/genetics , Wnt3 Protein/metabolism , Homeobox Protein PITX2
2.
Hum Mol Genet ; 27(3): 529-545, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29228333

ABSTRACT

DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer's vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cilia/metabolism , DNA Helicases/metabolism , Microtubule-Associated Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Carrier Proteins/genetics , Cilia/physiology , DNA Helicases/genetics , Female , Genotype , HEK293 Cells , Humans , Male , Microtubule-Associated Proteins/genetics , Mutation, Missense/genetics , Pedigree , Phenotype , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Exome Sequencing/methods , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
PLoS Genet ; 12(5): e1005993, 2016 05.
Article in English | MEDLINE | ID: mdl-27153221

ABSTRACT

Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.


Subject(s)
Angelman Syndrome/genetics , Autism Spectrum Disorder/genetics , Paternal Inheritance/genetics , Prader-Willi Syndrome/genetics , Schizophrenia/genetics , Angelman Syndrome/pathology , Autism Spectrum Disorder/pathology , Chromosome Duplication/genetics , Chromosomes, Human, Pair 15/genetics , DNA Copy Number Variations/genetics , Female , Genomic Imprinting/genetics , Humans , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Prader-Willi Syndrome/pathology , Schizophrenia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...