Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Viruses ; 16(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400041

ABSTRACT

Lassa virus (LASV) is a zoonotic pathogen endemic throughout western Africa and is responsible for a human disease known as Lassa fever (LF). Historically, LASV has been emphasized as one of the greatest public health threats in West Africa, with up to 300,000 cases and 5000 associated deaths per year. This, and the fact that the disease has been reported in travelers, has driven a rapid production of various vaccine candidates. Several of these vaccines are currently in clinical development, despite limitations in understanding the immune response to infection. Alarmingly, the host immune response has been implicated in the induction of sensorineural hearing loss in LF survivors, legitimately raising safety questions about any future vaccines as well as efficacy in preventing potential hearing loss. The objective of this article is to revisit the importance and prevalence of LF in West Africa, with focus on Nigeria, and discuss current therapeutic approaches and ongoing vaccine development. In addition, we aim to emphasize the need for more scientific studies relating to LF-associated hearing loss, and to promote critical discussion about potential risks and benefits of vaccinating the population in endemic regions of West Africa.


Subject(s)
Hearing Loss, Sensorineural , Lassa Fever , Viral Vaccines , Humans , Lassa Fever/epidemiology , Lassa Fever/prevention & control , Lassa virus , Africa, Western/epidemiology , Disease Management
2.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289100

ABSTRACT

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Subject(s)
Arenaviridae , Reverse Genetics , Animals , Female , Humans , Arenaviridae/genetics , Arenaviridae Infections/virology , Arenaviruses, New World/genetics , Chlorocebus aethiops , Hemorrhagic Fevers, Viral/virology , Phenotype , Reverse Genetics/methods , Vaccines , Vero Cells
3.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36992218

ABSTRACT

The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.

4.
mBio ; 13(4): e0183922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35856618

ABSTRACT

Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Antibody Diversity , Epitopes , Female , Germinal Center , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Humans , Influenza A Virus, H1N1 Subtype/genetics , Male , Mice , Vaccines, Inactivated
5.
J Extracell Vesicles ; 11(3): e12192, 2022 03.
Article in English | MEDLINE | ID: mdl-35289114

ABSTRACT

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster (Mesocricetus auratus) model of COVID-19. Intranasal immunization resulted in high titres of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titres in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.


Subject(s)
COVID-19 , Extracellular Vesicles , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Liposomes , Mammals , Nanoparticles , SARS-CoV-2
6.
BMC Immunol ; 23(1): 7, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35172720

ABSTRACT

BACKGROUND: While antibodies can provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. METHODS: We employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. RESULTS: To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. CONCLUSIONS: Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

7.
bioRxiv ; 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35132418

ABSTRACT

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.

8.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-34855624

ABSTRACT

BACKGROUNDWhile most children who contract COVID-19 experience mild disease, high-risk children with underlying conditions may develop severe disease, requiring interventions. Kinetics of antibodies transferred via COVID-19 convalescent plasma early in disease have not been characterized.METHODSIn this study, high-risk children were prospectively enrolled to receive high-titer COVID-19 convalescent plasma (>1:320 anti-spike IgG; Euroimmun). Passive transfer of antibodies and endogenous antibody production were serially evaluated for up to 2 months after transfusion. Commercial and research ELISA assays, virus neutralization assays, high-throughput phage-display assay utilizing a coronavirus epitope library, and pharmacokinetic analyses were performed.RESULTSFourteen high-risk children (median age, 7.5 years) received high-titer COVID-19 convalescent plasma, 9 children within 5 days (range, 2-7 days) of symptom onset and 5 children within 4 days (range, 3-5 days) after exposure to SARS-CoV-2. There were no serious adverse events related to transfusion. Antibodies against SARS-CoV-2 were transferred from the donor to the recipient, but antibody titers declined by 14-21 days, with a 15.1-day half-life for spike protein IgG. Donor plasma had significant neutralization capacity, which was transferred to the recipient. However, as early as 30 minutes after transfusion, recipient plasma neutralization titers were 6.2% (range, 5.9%-6.7%) of donor titers.CONCLUSIONConvalescent plasma transfused to high-risk children appears to be safe, with expected antibody kinetics, regardless of weight or age. However, current use of convalescent plasma in high-risk children achieves neutralizing capacity, which may protect against severe disease but is unlikely to provide lasting protection.Trial registrationClinicalTrials.gov NCT04377672.FundingThe state of Maryland, Bloomberg Philanthropies, and the NIH (grants R01-AI153349, R01-AI145435-A1, K08-AI139371-A1, and T32-AI052071).


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , Pharmacokinetics , SARS-CoV-2/metabolism , Adolescent , COVID-19/blood , Child , Child, Preschool , Female , Humans , Immunization, Passive , Infant , Male , Risk Factors , COVID-19 Serotherapy
9.
J Clin Virol ; 145: 104997, 2021 12.
Article in English | MEDLINE | ID: mdl-34695724

ABSTRACT

Oral fluid (hereafter saliva) offers a non-invasive sampling method for detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a laboratory-developed multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serologic enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, and Cohen's kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated variable, but comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in monitoring population-based seroprevalence and vaccine antibody response.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19 Serological Testing/methods , COVID-19/immunology , Humans , Immunization, Passive , Immunoglobulin G/isolation & purification , SARS-CoV-2 , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
10.
J Clin Microbiol ; 59(12): e0118621, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34469185

ABSTRACT

Serologic point-of-care tests to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an important tool in the COVID-19 pandemic. The majority of current point-of-care antibody tests developed for SARS-CoV-2 rely on lateral flow assays, but these do not offer quantitative information. To address this, we developed a novel antibody test leveraging hemagglutination, employing a dry card format currently used for typing ABO blood groups. Two hundred COVID-19 patient and 200 control plasma samples were reconstituted with O-negative red blood cells (RBCs) to form whole blood and added to dried viral-antibody fusion protein, followed by a stirring step and a tilting step, 3-min incubation, and a second tilting step. The sensitivities of the hemagglutination test, Euroimmun IgG enzyme-linked immunosorbent assay (ELISA), and receptor binding domain (RBD)-based CoronaChek lateral flow assay were 87.0%, 86.5%, and 84.5%, respectively, using samples obtained from recovered COVID-19 individuals. Testing prepandemic samples, the hemagglutination test had a specificity of 95.5%, compared to 97.3% and 98.9% for the ELISA and CoronaChek, respectively. A distribution of agglutination strengths was observed in COVID-19 convalescent-phase plasma samples, with the highest agglutination score (4) exhibiting significantly higher neutralizing antibody titers than weak positives (2) (P < 0.0001). Strong agglutinations were observed within 1 min of testing, and this shorter assay time also increased specificity to 98.5%. In conclusion, we developed a novel rapid, point-of-care RBC agglutination test for the detection of SARS-CoV-2 antibodies that can yield semiquantitative information on neutralizing antibody titer in patients. The 5-min test may find use in determination of serostatus prior to vaccination, postvaccination surveillance, and travel screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Hemagglutination , Hemagglutination Tests , Humans , Pandemics , Point-of-Care Systems , Sensitivity and Specificity
11.
medRxiv ; 2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34401890

ABSTRACT

While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

12.
mBio ; 12(4): e0097421, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34253053

ABSTRACT

In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Lung/pathology , SARS-CoV-2/immunology , Severity of Illness Index , Animals , Antibody Formation/immunology , Cricetinae , Disease Models, Animal , Estradiol/pharmacology , Female , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Interferon-beta/analysis , Lung/diagnostic imaging , Lung/virology , Male , Sex Factors , Spike Glycoprotein, Coronavirus/immunology , Tumor Necrosis Factor-alpha/analysis , Viral Load
13.
Open Forum Infect Dis ; 8(6): ofab195, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34095338

ABSTRACT

BACKGROUND: Sustained molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the upper respiratory tract (URT) in mild to moderate coronavirus disease 2019 (COVID-19) is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five symptomatic outpatients self-collected midturbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR), in 507 URT samples occurred a median (interquartile range) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR-positive samples tested. All participants but 1 with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (adjusted hazard ratio [aHR], 0.96; 95% CI, 0.92-0.99; P = .020) and body mass index (BMI) ≥25 kg/m2 (aHR, 0.37; 95% CI, 0.18-0.78; P = .009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as 1 of first 3 COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR, 2.06; 95% CI, 1.02-4.18; P = .044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

14.
medRxiv ; 2021 May 04.
Article in English | MEDLINE | ID: mdl-33972952

ABSTRACT

Serologic, point-of-care tests to detect antibodies against SARS-CoV-2 are an important tool in the COVID-19 pandemic. The majority of current point-of-care antibody tests developed for SARS-CoV-2 rely on lateral flow assays, but these do not offer quantitative information. To address this, we developed a new method of COVID-19 antibody testing employing hemagglutination tested on a dry card, similar to that which is already available for rapid typing of ABO blood groups. A fusion protein linking red blood cells (RBCs) to the receptor-binding domain (RBD) of SARS-CoV-2 spike protein was placed on the card. 200 COVID-19 patient and 200 control plasma samples were reconstituted with O-negative RBCs to form whole blood and added to the dried protein, followed by a stirring step and a tilting step, 3-minute incubation, and a second tilting step. The sensitivity for the hemagglutination test, Euroimmun IgG ELISA test and RBD-based CoronaChek lateral flow assay was 87.0%, 86.5%, and 84.5%, respectively, using samples obtained from recovered COVID-19 individuals. Testing pre-pandemic samples, the hemagglutination test had a specificity of 95.5%, compared to 97.3% and 98.9% for the ELISA and CoronaChek, respectively. A distribution of agglutination strengths was observed in COVID-19 convalescent plasma samples, with the highest agglutination score (4) exhibiting significantly higher neutralizing antibody titers than weak positives (2) (p<0.0001). Strong agglutinations were observed within 1 minute of testing, and this shorter assay time also increased specificity to 98.5%. In conclusion, we developed a novel rapid, point-of-care RBC agglutination test for the detection of SARS-CoV-2 antibodies that can yield semi-quantitative information on neutralizing antibody titer in patients. The five-minute test may find use in determination of serostatus prior to vaccination, post-vaccination surveillance and travel screening.

15.
mBio ; 12(2)2021 04 20.
Article in English | MEDLINE | ID: mdl-33879585

ABSTRACT

Convalescent plasma is a promising therapy for coronavirus disease 2019 (COVID-19), but the antibody characteristics that contribute to efficacy remain poorly understood. This study analyzed plasma samples from 126 eligible convalescent blood donors in addition to 15 naive individuals, as well as an additional 20 convalescent individuals as a validation cohort. Multiplexed Fc Array binding assays and functional antibody response assays were utilized to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody composition and activity. Donor convalescent plasma samples contained a range of antibody cell- and complement-mediated effector functions, indicating the diverse antiviral activity of humoral responses observed among recovered individuals. In addition to viral neutralization, convalescent plasma samples contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis, and antibody-dependent cellular cytotoxicity against SARS-CoV-2. Plasma samples from a fraction of eligible donors exhibited high activity across all activities evaluated. These polyfunctional plasma samples could be identified with high accuracy with even single Fc Array features, whose correlation with polyfunctional activity was confirmed in the validation cohort. Collectively, these results expand understanding of the diversity of antibody-mediated antiviral functions associated with convalescent plasma, and the polyfunctional antiviral functions suggest that it could retain activity even when its neutralizing capacity is reduced by mutations in variant SARS-CoV-2.IMPORTANCE Convalescent plasma has been deployed globally as a treatment for COVID-19, but efficacy has been mixed. Better understanding of the antibody characteristics that may contribute to its antiviral effects is important for this intervention as well as offer insights into correlates of vaccine-mediated protection. Here, a survey of convalescent plasma activities, including antibody neutralization and diverse effector functions, was used to define plasma samples with broad activity profiles. These polyfunctional plasma samples could be reliably identified in multiple cohorts by multiplex assay, presenting a widely deployable screening test for plasma selection and investigation of vaccine-elicited responses.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Antigens, Viral/immunology , Biophysical Phenomena , Cohort Studies , Complement Activation , Convalescence , Female , Humans , Immunization, Passive , Male , Middle Aged , Phagocytosis , Young Adult , COVID-19 Serotherapy
16.
Am J Obstet Gynecol ; 225(3): 301.e1-301.e14, 2021 09.
Article in English | MEDLINE | ID: mdl-33798476

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2, the disease-causing pathogen of the coronavirus disease 2019 pandemic, has resulted in morbidity and mortality worldwide. Pregnant women are more susceptible to severe coronavirus disease 2019 and are at higher risk of preterm birth than uninfected pregnant women. Despite this evidence, the immunologic effects of severe acute respiratory syndrome coronavirus 2 infection during pregnancy remain understudied. OBJECTIVE: This study aimed to assess the impact of severe acute respiratory syndrome coronavirus 2 infection during pregnancy on inflammatory and humoral responses in maternal and fetal samples and compare antibody responses to severe acute respiratory syndrome coronavirus 2 among pregnant and nonpregnant women. STUDY DESIGN: Immune responses to severe acute respiratory syndrome coronavirus 2 were analyzed using samples from pregnant (n=33) and nonpregnant (n=17) women who tested either positive (pregnant, 22; nonpregnant, 17) or negative for severe acute respiratory syndrome coronavirus 2 (pregnant, 11) at Johns Hopkins Hospital. We measured proinflammatory and placental cytokine messenger RNAs, neonatal Fc receptor expression, and tetanus antibody transfer in maternal and cord blood samples. In addition, we evaluated antispike immunoglobulin G, antispike receptor-binding domain immunoglobulin G, and neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 in serum or plasma collected from nonpregnant women, pregnant women, and cord blood. RESULTS: Pregnant women with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection expressed more interleukin-1 beta, but not interleukin 6, in blood samples collected within 14 days vs >14 days after performing severe acute respiratory syndrome coronavirus 2 test. Pregnant women with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection also had reduced antispike receptor-binding domain immunoglobulin G titers and were less likely to have detectable neutralizing antibody than nonpregnant women. Although severe acute respiratory syndrome coronavirus 2 infection did not disrupt neonatal Fc receptor expression in the placenta, maternal transfer of severe acute respiratory syndrome coronavirus 2 neutralizing antibody was inhibited by infection during pregnancy. CONCLUSION: Severe acute respiratory syndrome coronavirus 2 infection during pregnancy was characterized by placental inflammation and reduced antiviral antibody responses, which may impact the efficacy of coronavirus disease 2019 treatment in pregnancy. In addition, the long-term implications of placental inflammation for neonatal health require greater consideration.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Inflammation/virology , Interleukin-1beta/genetics , Pregnancy Complications/virology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Arabidopsis Proteins/blood , COVID-19/complications , Female , Fetal Blood/chemistry , Gene Expression , Humans , Immunoglobulin G/blood , Interleukin-6/genetics , Membrane Proteins/blood , Placenta Diseases/virology , Pregnancy , Pregnancy Complications/immunology , Spike Glycoprotein, Coronavirus/immunology
17.
bioRxiv ; 2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33821269

ABSTRACT

In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 10 5 TCID 50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.

18.
medRxiv ; 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33688688

ABSTRACT

BACKGROUND: Sustained molecular detection of SARS-CoV-2 RNA in the upper respiratory tract (URT) in mild to moderate COVID-19 is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five outpatients self-collected mid-turbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 RT-PCR, in 507 URT samples occurred a median (IQR) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR positive samples tested. All participants but one with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (aHR 0.96, 95% CI 0.92-0.99, p=0.020) and BMI ≥ 25kg/m 2 (aHR 0.37, 95% CI 0.18-0.78, p=0.009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as one of first three COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR 2.06, 95% CI 1.02-4.18, p=0.044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

19.
Open Forum Infect Dis ; 8(2): ofaa574, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33553467

ABSTRACT

BACKGROUND: The efficacy of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is primarily ascribed as a source of neutralizing anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. However, the composition of other immune components in CCP and their potential roles remain largely unexplored. This study aimed to describe the composition and concentrations of plasma cytokines and chemokines in eligible CCP donors. METHODS: A cross-sectional study was conducted among 20 prepandemic healthy blood donors without SARS-CoV-2 infection and 140 eligible CCP donors with confirmed SARS-CoV-2 infection. Electrochemiluminescence detection-based multiplexed sandwich immunoassays were used to quantify plasma cytokine and chemokine concentrations (n = 35 analytes). A SARS-CoV-2 microneutralization assay was also performed. Differences in the percentage of detection and distribution of cytokine and chemokine concentrations were examined by categorical groups using Fisher's exact and Wilcoxon rank-sum tests, respectively. RESULTS: Among CCP donors (n = 140), the median time since molecular diagnosis of SARS-CoV-2 was 44 days (interquartile range = 38-50) and 9% (n = 12) were hospitalized due to COVID-19. Compared with healthy blood donor controls, CCP donors had significantly higher plasma levels of interferon (IFN)-γ, interleukin (IL)-10, IL-15, IL-21, and macrophage-inflammatory protein-1, but lower levels of IL-1RA, IL-8, IL-16, and vascular endothelial growth factor-A (P < .0014). The distributions of plasma levels of IL-8, IL-15, and IFN-inducible protein-10 were significantly higher among CCP donors with high (≥160) versus low (<40) anti-SARS-CoV-2 neutralizing antibody titers (P < .0014). The median levels of IL-6 were significantly higher among CCP donors who were hospitalized versus nonhospitalized (P < .0014). CONCLUSIONS: Heterogeneity in cytokine and chemokine composition of CCP suggests there is a different inflammatory state among the CCP donors compared with SARS-CoV-2 naive, healthy blood donors.

20.
medRxiv ; 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33532806

ABSTRACT

Oral fluid (hereafter saliva) offers a non-invasive sampling method for the detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serology enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, overall percent agreement (PA), and Cohen kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in screening CCP donors and monitoring population-based seroprevalence and vaccine antibody response.

SELECTION OF CITATIONS
SEARCH DETAIL
...