Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
2.
Sci Data ; 9(1): 219, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585088

ABSTRACT

Hospitalized patients receiving hematopoietic cell transplants provide a unique opportunity to study the human gut microbiome. We previously compiled a large-scale longitudinal dataset of fecal microbiota and associated metadata, but we had limited that analysis to taxonomic composition of bacteria from 16S rRNA gene sequencing. Here we augment those data with shotgun metagenomics. The compilation amounts to a nested subset of 395 samples compiled from different studies at Memorial Sloan Kettering. Shotgun metagenomics describes the microbiome at the functional level, particularly in antimicrobial resistances and virulence factors. We provide accession numbers that link each sample to the paired-end sequencing files deposited in a public repository, which can be directly accessed by the online services of PATRIC to be analyzed without the users having to download or transfer the files. Then, we show how shotgun sequencing enables the assembly of genomes from metagenomic data. The new data, combined with the metadata published previously, enables new functional studies of the microbiomes of patients with cancer receiving bone marrow transplantation.


Subject(s)
Feces , Hematopoietic Stem Cell Transplantation , Microbiota , Feces/microbiology , Humans , Metagenomics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
3.
Nat Med ; 28(4): 713-723, 2022 04.
Article in English | MEDLINE | ID: mdl-35288695

ABSTRACT

Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has led to unprecedented responses in patients with high-risk hematologic malignancies. However, up to 60% of patients still experience disease relapse and up to 80% of patients experience CAR-mediated toxicities, such as cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. We investigated the role of the intestinal microbiome on these outcomes in a multicenter study of patients with B cell lymphoma and leukemia. We found in a retrospective cohort (n = 228) that exposure to antibiotics, in particular piperacillin/tazobactam, meropenem and imipenem/cilastatin (P-I-M), in the 4 weeks before therapy was associated with worse survival and increased neurotoxicity. In stool samples from a prospective cohort of CAR T cell recipients (n = 48), the fecal microbiome was altered at baseline compared to healthy controls. Stool sample profiling by 16S ribosomal RNA and metagenomic shotgun sequencing revealed that clinical outcomes were associated with differences in specific bacterial taxa and metabolic pathways. Through both untargeted and hypothesis-driven analysis of 16S sequencing data, we identified species within the class Clostridia that were associated with day 100 complete response. We concluded that changes in the intestinal microbiome are associated with clinical outcomes after anti-CD19 CAR T cell therapy in patients with B cell malignancies.


Subject(s)
Gastrointestinal Microbiome , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Antigens, CD19 , Humans , Immunotherapy, Adoptive/adverse effects , Neurotoxicity Syndromes/etiology , Prospective Studies , Retrospective Studies
5.
Sci Data ; 8(1): 71, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33654104

ABSTRACT

The impact of the gut microbiota in human health is affected by several factors including its composition, drug administrations, therapeutic interventions and underlying diseases. Unfortunately, many human microbiota datasets available publicly were collected to study the impact of single variables, and typically consist of outpatients in cross-sectional studies, have small sample numbers and/or lack metadata to account for confounders. These limitations can complicate reusing the data for questions outside their original focus. Here, we provide comprehensive longitudinal patient dataset that overcomes those limitations: a collection of fecal microbiota compositions (>10,000 microbiota samples from >1,000 patients) and a rich description of the "hospitalome" experienced by the hosts, i.e., their drug exposures and other metadata from patients with cancer, hospitalized to receive allogeneic hematopoietic cell transplantation (allo-HCT) at a large cancer center in the United States. We present five examples of how to apply these data to address clinical and scientific questions on host-associated microbial communities.


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Hospitalization , Feces/microbiology , Humans , RNA, Ribosomal, 16S/genetics , United States
6.
Nat Commun ; 12(1): 755, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531483

ABSTRACT

Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1-/- mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4+ Foxp3+ T-regulatory cells, but not B cells or CD8+ T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host's inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.


Subject(s)
Clostridioides difficile/pathogenicity , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Clostridium Infections/immunology , Clostridium Infections/metabolism , Feces/microbiology , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Inflammation/immunology , Inflammation/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
7.
Cell Host Microbe ; 29(3): 378-393.e5, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33539766

ABSTRACT

The gut microbiota produces metabolites that regulate host immunity, thereby impacting disease resistance and susceptibility. The extent to which commensal bacteria reciprocally respond to immune activation, however, remains largely unexplored. Herein, we colonized mice with four anaerobic symbionts and show that acute immune responses result in dramatic transcriptional reprogramming of these commensals with minimal changes in their relative abundance. Transcriptomic changes include induction of stress-response mediators and downregulation of carbohydrate-degrading factors such as polysaccharide utilization loci (PULs). Flagellin and anti-CD3 antibody, two distinct immune stimuli, induced similar transcriptional profiles, suggesting that commensal bacteria detect common effectors or activate shared pathways when facing different host responses. Immune activation altered the intestinal metabolome within 6 hours, decreasing luminal short-chain fatty acid and increasing aromatic metabolite concentrations. Thus, intestinal bacteria, prior to detectable shifts in community composition, respond to acute host immune activation by rapidly changing gene transcription and immunomodulatory metabolite production.


Subject(s)
Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Intestines/immunology , Intestines/microbiology , Animals , Bacteria/genetics , Bacteria/metabolism , Cross-Sectional Studies , Down-Regulation , Fatty Acids, Volatile , Female , Flagellin , Gastrointestinal Microbiome/genetics , Inflammation/immunology , Metabolome , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Symbiosis , Transcriptome
8.
ISME J ; 15(5): 1539-1550, 2021 05.
Article in English | MEDLINE | ID: mdl-33408370

ABSTRACT

Schistosome infection is recognized as a potentially modifiable risk factor for HIV in women by the World Health Organization. Alterations in cervicovaginal bacteria have been associated with HIV acquisition and have not been studied in schistosome infection. We collected cervical swabs from Tanzanian women with and without S. mansoni and S. haematobium to determine effects on cervicovaginal microbiota. Infected women were treated, and follow-up swabs were collected after 3 months. 16S rRNA sequencing was performed on DNA extracted from swabs. We compared 39 women with S. mansoni with 52 uninfected controls, and 16 with S. haematobium with 27 controls. S. mansoni-infected women had increased abundance of Peptostreptococcus (p = 0.026) and presence of Prevotella timonesis (p = 0.048) compared to controls. High-intensity S. haematobium infection was associated with more diverse cervicovaginal bacterial communities than uninfected controls (p = 0.0159). High-intensity S. mansoni infection showed a similar trend (p = 0.154). At follow-up, we observed increased alpha diversity in S. mansoni (2.53 vs. 1.72, p = 0.022) and S. haematobium (2.05 vs. 1.12, p = 0.066) infection groups compared to controls. Modifications in cervicovaginal microbiota, particularly increased diversity and abundance of taxa associated with bacterial vaginosis and HIV (Peptostreptococcus, Prevotella), were associated with schistosome infection.


Subject(s)
Schistosomiasis haematobia , Schistosomiasis mansoni , Adult , Animals , Bacteria/genetics , Female , Humans , RNA, Ribosomal, 16S/genetics , Schistosoma haematobium , Schistosoma mansoni/genetics , Schistosomiasis haematobia/epidemiology
9.
Blood ; 137(11): 1527-1537, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33512409

ABSTRACT

We previously described clinically relevant reductions in fecal microbiota diversity in patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Recipients of high-dose chemotherapy and autologous HCT (auto-HCT) incur similar antibiotic exposures and nutritional alterations. To characterize the fecal microbiota in the auto-HCT population, we analyzed 1161 fecal samples collected from 534 adult recipients of auto-HCT for lymphoma, myeloma, and amyloidosis in an observational study conducted at 2 transplantation centers in the United States. By using 16S ribosomal gene sequencing, we assessed fecal microbiota composition and diversity, as measured by the inverse Simpson index. At both centers, the diversity of early pretransplant fecal microbiota was lower in patients than in healthy controls and decreased further during the course of transplantation. Loss of diversity and domination by specific bacterial taxa occurred during auto-HCT in patterns similar to those with allo-HCT. Above-median fecal intestinal diversity in the periengraftment period was associated with decreased risk of death or progression (progression-free survival hazard ratio, 0.46; 95% confidence interval, 0.26-0.82; P = .008), adjusting for disease and disease status. This suggests that further investigation into the health of the intestinal microbiota in auto-HCT patients and posttransplant outcomes should be undertaken.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Adult , Aged , Female , Humans , Male , Middle Aged , Transplantation, Homologous
10.
Clin Infect Dis ; 73(11): e4627-e4635, 2021 12 06.
Article in English | MEDLINE | ID: mdl-31976518

ABSTRACT

BACKGROUND: Gram-negative bloodstream infections (BSIs) represent a significant complication facing allogeneic hematopoietic cell transplant (allo-HCT) recipients, as a result of intestinal translocation during neutropenia. In this study we sought to better understand how the composition of the intestinal microbiota is connected to risk of gram-negative BSIs, expanding on our prior work in these patients. METHODS: Fecal specimens were collected from recipients of allo-HCT and analyzed using 16S ribosomal RNA gene sequencing. Samples and clinical data extending from the pretransplant conditioning period through stem cell engraftment were used in the analysis. Intestinal domination (relative abundance ≥ 30%) by gram-negative bacteria was used as predictor of gram-negative BSI using Cox proportional hazards modeling. Further analysis of microbiota composition was performed at the genus level. RESULTS: Seven hundred eight allo-HCT subjects were studied (7.5% developed gram-negative infection), with 4768 fecal samples for analysis. Gram-negative intestinal domination was associated with subsequent BSI, which was observed overall and individually at the genus level: Escherichia, Klebsiella, Enterobacter, Pseudomonas, and Stenotrophomonas. Fluoroquinolone prophylaxis was associated with decreased BSI and intestinal colonization by gram-negative microbes. In fluoroquinolone-prophylaxed patients, Escherichia coli was more frequently observed as breakthrough, both in terms of intestinal colonization and BSIs, compared with nonprophylaxed patients. Initial colonization by members of Ruminococcaceae and Bacteroidetes were associated with protection against gram-negative BSI. CONCLUSIONS: Gram-negative intestinal colonization is highly predictive of BSI in the setting of allo-HCT. Fluoroquinolones appear to reduce these infections by influencing gut colonization.


Subject(s)
Bacteremia , Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Sepsis , Bacteremia/microbiology , Gram-Negative Bacteria , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Retrospective Studies , Sepsis/complications
11.
Nat Commun ; 11(1): 4475, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901029

ABSTRACT

Tissue resident memory CD8+ T cells (Trm) are poised for immediate reactivation at sites of pathogen entry and provide optimal protection of mucosal surfaces. The intestinal tract represents a portal of entry for many infectious agents; however, to date specific strategies to enhance Trm responses at this site are lacking. Here, we present TMDI (Transient Microbiota Depletion-boosted Immunization), an approach that leverages antibiotic treatment to temporarily restrain microbiota-mediated colonization resistance, and favor intestinal expansion to high densities of an orally-delivered Listeria monocytogenes strain carrying an antigen of choice. By augmenting the local chemotactic gradient as well as the antigenic load, this procedure generates a highly expanded pool of functional, antigen-specific intestinal Trm, ultimately enhancing protection against infectious re-challenge in mice. We propose that TMDI is a useful model to dissect the requirements for optimal Trm responses in the intestine, and also a potential platform to devise novel mucosal vaccination approaches.


Subject(s)
Gastrointestinal Microbiome/immunology , Immunity, Mucosal , Administration, Oral , Animals , Antigens/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Chemotaxis/immunology , Female , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/immunology , Immunity, Mucosal/drug effects , Immunologic Memory , Listeria monocytogenes/growth & development , Listeria monocytogenes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/administration & dosage , Streptomycin/administration & dosage
12.
Cell Host Microbe ; 28(1): 134-146.e4, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32492369

ABSTRACT

Bacteria belonging to the Lachnospiraceae family are abundant, obligate anaerobic members of the microbiota in healthy humans. Lachnospiraceae impact their hosts by producing short-chain fatty acids, converting primary to secondary bile acids, and facilitating colonization resistance against intestinal pathogens. To increase our understanding of genomic and functional diversity between members of this family, we cultured 273 Lachnospiraceae isolates representing 11 genera and 27 species from human donors and performed whole-genome sequencing assembly and annotation. This analysis revealed substantial inter- and intra-species diversity in pathways that likely influence an isolate's ability to impact host health. These differences are likely to impact colonization resistance through lantibiotic expression or intestinal acidification, influence host mucosal immune cells and enterocytes via butyrate production, or contribute to synergism within a consortium by heterogenous polysaccharide metabolism. Identification of these specific functions could facilitate development of probiotic bacterial consortia that drive and/or restore in vivo microbiome functions.


Subject(s)
Clostridiales/classification , Clostridiales/genetics , Gastrointestinal Microbiome/genetics , Genetic Variation , Metabolic Networks and Pathways/genetics , Feces/microbiology , Genome, Bacterial , Humans , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Whole Genome Sequencing
13.
Comp Med ; 70(3): 277-290, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32404234

ABSTRACT

Clostridioides difficile is an enteric pathogen that can cause significant clinical disease in both humans and animals. However, clinical disease arises most commonly after treatment with broad-spectrum antibiotics. The organism's ability to cause naturally occurring disease in mice is rare, and little is known about its clinical significance in highly immunocompromised mice. We report on 2 outbreaks of diarrhea associated with C. difficile in mice. In outbreak 1, 182 of approximately 2, 400 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and related strains of mice became clinically ill after cessation of a 14-d course of 0.12% amoxicillin feed to control an increase in clinical signs associated with Corynebacterium bovis infection. Most mice had been engrafted with human tumors; the remainder were experimentally naïve. Affected animals exhibited 1 of 3 clinical syndromes: 1) peracute death; 2) severe diarrhea leading to euthanasia or death; or 3) mild to moderate diarrhea followed by recovery. A given cage could contain both affected and unaffected mice. Outbreak 2 involved a small breeding colony (approximately 50 mice) of NOD. CB17-Prkdcscid/NCrCrl (NOD-scid) mice that had not received antibiotics or experimental manipulations. In both outbreaks, C. difficile was isolated, and toxins A and B were detected in intestinal content or feces. Histopathologic lesions highly suggestive of C. difficile enterotoxemia included fibrinonecrotizing and neutrophilic typhlocolitis with characteristic 'volcano' erosions or pseudomembrane formation. Genomic analysis of 4 isolates (3 from outbreak 1 and 1 from outbreak 2) revealed that these isolates were closely related to a pathogenic human isolate, CD 196. To our knowledge, this report is the first to describe naturally occurring outbreaks of C. difficile-associated typhlocolitis with significant morbidity and mortality in highly immunocompromised strains of mice.


Subject(s)
Clostridium Infections/veterinary , Diarrhea/veterinary , Amoxicillin/administration & dosage , Amoxicillin/adverse effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Clostridioides difficile/isolation & purification , Clostridium Infections/mortality , Diarrhea/etiology , Disease Outbreaks/veterinary , Immunocompromised Host , Mice , Mice, Inbred NOD , Rodent Diseases
14.
Blood ; 136(1): 130-136, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32430495

ABSTRACT

Studies of the relationship between the gastrointestinal microbiota and outcomes in allogeneic hematopoietic stem cell transplantation (allo-HCT) have thus far largely focused on early complications, predominantly infection and acute graft-versus-host disease (GVHD). We examined the potential relationship of the microbiome with chronic GVHD (cGVHD) by analyzing stool and plasma samples collected late after allo-HCT using a case-control study design. We found lower circulating concentrations of the microbe-derived short-chain fatty acids (SCFAs) propionate and butyrate in day 100 plasma samples from patients who developed cGVHD, compared with those who remained free of this complication, in the initial case-control cohort of transplant patients and in a further cross-sectional cohort from an independent transplant center. An additional cross-sectional patient cohort from a third transplant center was analyzed; however, serum (rather than plasma) was available, and the differences in SCFAs observed in the plasma samples were not recapitulated. In sum, our findings from the primary case-control cohort and 1 of 2 cross-sectional cohorts explored suggest that the gastrointestinal microbiome may exert immunomodulatory effects in allo-HCT patients at least in part due to control of systemic concentrations of microbe-derived SCFAs.


Subject(s)
Butyrates/blood , Gastrointestinal Microbiome , Graft vs Host Disease/microbiology , Propionates/blood , Adult , Allografts , Bacteria/isolation & purification , Bacteria/metabolism , Case-Control Studies , Chronic Disease , Dysbiosis/etiology , Dysbiosis/microbiology , Feces/microbiology , Graft vs Host Disease/blood , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Metabolome , Ribotyping
15.
N Engl J Med ; 382(9): 822-834, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32101664

ABSTRACT

BACKGROUND: Relationships between microbiota composition and clinical outcomes after allogeneic hematopoietic-cell transplantation have been described in single-center studies. Geographic variations in the composition of human microbial communities and differences in clinical practices across institutions raise the question of whether these associations are generalizable. METHODS: The microbiota composition of fecal samples obtained from patients who were undergoing allogeneic hematopoietic-cell transplantation at four centers was profiled by means of 16S ribosomal RNA gene sequencing. In an observational study, we examined associations between microbiota diversity and mortality using Cox proportional-hazards analysis. For stratification of the cohorts into higher- and lower-diversity groups, the median diversity value that was observed at the study center in New York was used. In the analysis of independent cohorts, the New York center was cohort 1, and three centers in Germany, Japan, and North Carolina composed cohort 2. Cohort 1 and subgroups within it were analyzed for additional outcomes, including transplantation-related death. RESULTS: We profiled 8767 fecal samples obtained from 1362 patients undergoing allogeneic hematopoietic-cell transplantation at the four centers. We observed patterns of microbiota disruption characterized by loss of diversity and domination by single taxa. Higher diversity of intestinal microbiota was associated with a lower risk of death in independent cohorts (cohort 1: 104 deaths among 354 patients in the higher-diversity group vs. 136 deaths among 350 patients in the lower-diversity group; adjusted hazard ratio, 0.71; 95% confidence interval [CI], 0.55 to 0.92; cohort 2: 18 deaths among 87 patients in the higher-diversity group vs. 35 deaths among 92 patients in the lower-diversity group; adjusted hazard ratio, 0.49; 95% CI, 0.27 to 0.90). Subgroup analyses identified an association between lower intestinal diversity and higher risks of transplantation-related death and death attributable to graft-versus-host disease. Baseline samples obtained before transplantation already showed evidence of microbiome disruption, and lower diversity before transplantation was associated with poor survival. CONCLUSIONS: Patterns of microbiota disruption during allogeneic hematopoietic-cell transplantation were similar across transplantation centers and geographic locations; patterns were characterized by loss of diversity and domination by single taxa. Higher diversity of intestinal microbiota at the time of neutrophil engraftment was associated with lower mortality. (Funded by the National Cancer Institute and others.).


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation/mortality , Adult , Biodiversity , Feces/microbiology , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Survival Analysis , Transplantation, Homologous/mortality
16.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31907198

ABSTRACT

Antibiotic treatment of patients undergoing complex medical treatments can deplete commensal bacterial strains from the intestinal microbiota, thereby reducing colonization resistance against a wide range of antibiotic-resistant pathogens. Loss of colonization resistance can lead to marked expansion of vancomycin-resistant Enterococcus faecium (VRE), Klebsiella pneumoniae, and Escherichia coli in the intestinal lumen, predisposing patients to bloodstream invasion and sepsis. The impact of intestinal domination by these antibiotic-resistant pathogens on mucosal immune defenses and epithelial and mucin-mediated barrier integrity is unclear. We used a mouse model to study the impact of intestinal domination by antibiotic-resistant bacterial species and strains on the colonic mucosa. Intestinal colonization with K. pneumoniae, Proteus mirabilis, or Enterobacter cloacae promoted greater recruitment of neutrophils to the colonic mucosa. To test the hypothesis that the residual microbiota influences the severity of colitis caused by infection with Clostridioides difficile, we coinfected mice that were colonized with ampicillin-resistant bacteria with a virulent strain of C. difficile and monitored colonization and pathogenesis. Despite the compositional differences in the gut microbiota, the severity of C. difficile infection (CDI) and mortality did not differ significantly between mice colonized with different ampicillin-resistant bacterial species. Our results suggest that the virulence mechanisms enabling CDI and epithelial destruction outweigh the relatively minor impact of less-virulent antibiotic-resistant intestinal bacteria on the outcome of CDI.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Clostridium Infections/physiopathology , Drug Resistance, Bacterial , Enterobacter cloacae/growth & development , Enterobacteriaceae Infections/complications , Klebsiella pneumoniae/growth & development , Proteus mirabilis/growth & development , Animals , Clostridium Infections/microbiology , Colitis/microbiology , Colitis/physiopathology , Disease Models, Animal , Enterobacter cloacae/drug effects , Enterobacteriaceae Infections/drug therapy , Klebsiella pneumoniae/drug effects , Mice , Microbial Interactions , Proteus mirabilis/drug effects , Survival Analysis
17.
Nat Med ; 26(1): 59-64, 2020 01.
Article in English | MEDLINE | ID: mdl-31907459

ABSTRACT

The intestinal microbiota is a complex community of bacteria, archaea, viruses, protists and fungi1,2. Although the composition of bacterial constituents has been linked to immune homeostasis and infectious susceptibility3-7, the role of non-bacterial constituents and cross-kingdom microbial interactions in these processes is poorly understood2,8. Fungi represent a major cause of infectious morbidity and mortality in immunocompromised individuals, although the relationship of intestinal fungi (that is, the mycobiota) with fungal bloodstream infections remains undefined9. We integrated an optimized bioinformatics pipeline with high-resolution mycobiota sequencing and comparative genomic analyses of fecal and blood specimens from recipients of allogeneic hematopoietic cell transplant. Patients with Candida bloodstream infection experienced a prior marked intestinal expansion of pathogenic Candida species; this expansion consisted of a complex dynamic between multiple species and subspecies with a stochastic translocation pattern into the bloodstream. The intestinal expansion of pathogenic Candida spp. was associated with a substantial loss in bacterial burden and diversity, particularly in the anaerobes. Thus, simultaneous analysis of intestinal fungi and bacteria identifies dysbiosis states across kingdoms that may promote fungal translocation and facilitate invasive disease. These findings support microbiota-driven approaches to identify patients at risk of fungal bloodstream infections for pre-emptive therapeutic intervention.


Subject(s)
Candidiasis, Invasive/microbiology , Intestines/microbiology , Mycobiome , Bacteria/isolation & purification , Candida/pathogenicity , Cross Infection/blood , Cross Infection/microbiology , Feces/microbiology , Hematopoietic Stem Cell Transplantation , Humans , Species Specificity , Transplantation, Homologous
18.
Clin Hematol Int ; 2(4): 156-164, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34595456

ABSTRACT

BACKGROUND: Monocytes are an essential cellular component of the innate immune system that support the host's effectiveness to combat a range of infectious pathogens. Hemopoietic cell transplantation (HCT) results in transient monocyte depletion, but the factors that regulate recovery of monocyte populations are not fully understood. In this study, we investigated whether the composition of the gastrointestinal microbiota is associated with the recovery of monocyte homeostasis after HCT. METHODS: We performed a single-center, prospective, pilot study of 18 recipients of either autologous or allogeneic HCT. Serial blood and stool samples were collected from each patient during their HCT hospitalization. Analysis of the gut microbiota was done using 16S rRNA gene sequencing, and flow cytometric analysis was used to characterize the phenotypic composition of monocyte populations. RESULTS: Dynamic fluctuations in monocyte reconstitution occurred after HCT, and large differences were observed in monocyte frequency among patients over time. Recovery of absolute monocyte counts and subsets showed significant variability across the heterogeneous transplant types and conditioning intensities; no relationship to the microbiota composition was observed in this small cohort. CONCLUSION: In this pilot study, a relationship between the microbiota composition and monocyte homeostasis could not be firmly established. However, we identify multivariate associations between clinical factors and monocyte reconstitution post-HCT. Our findings encourage further longitudinal surveillance of the intestinal microbiome and its link to immune reconstitution.

19.
Cancer Immunol Res ; 8(2): 192-202, 2020 02.
Article in English | MEDLINE | ID: mdl-31831634

ABSTRACT

Burnet postulated that the diversity of T-cell receptors (TCR) allows T cells to protect against the development of cancers that display antigens with a similar, seemingly endless diversity. To test this hypothesis, we developed a strategy in which a single breeding pair of mice gives rise to four groups of sibling mice. Three of the four groups had a similar number of CD8+ T cells, but TCR diversity was either broad, significantly reduced, or absent when expressing only one type of TCR. The fourth group had no T cells. All mice shared the same housing, and, therefore, their microbial environment was similar. Only slight differences in the intestinal flora were observed under these conditions. An undisturbed broad TCR repertoire was required for the rejection of inoculated cancers displaying the natural antigenic heterogeneity of primary tumors, whereas even one type of TCR was sufficient to protect against artificial cancers stably expressing cognate antigens. The three groups of mice with limited or no TCR repertoire showed an increased risk of developing primary tumors after chemical induction. However, the risk of early death or morbidity in these cohorts of mice was significantly higher than in mice with a diverse TCR repertoire, and it remains unknown whether mice with reduced TCR diversity, who died early without cancer, would have developed tumors with higher, lower, or equal probability after induction. Together, TCR diversity seems crucial to overcome the natural genetic instability of cancers and their antigenic heterogeneity, which impacts the design of cellular therapies.


Subject(s)
Neoplasm Transplantation/methods , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/metabolism , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics
20.
Nature ; 572(7771): 665-669, 2019 08.
Article in English | MEDLINE | ID: mdl-31435014

ABSTRACT

Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.


Subject(s)
Bacteriocins/metabolism , Bacteriocins/pharmacology , Enterococcus faecium/drug effects , Lactococcus lactis/metabolism , Probiotics , Vancomycin Resistance/drug effects , Vancomycin-Resistant Enterococci/drug effects , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/isolation & purification , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Germ-Free Life , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Lactococcus lactis/chemistry , Lactococcus lactis/growth & development , Lactococcus lactis/physiology , Mice , Microbial Sensitivity Tests , Microbiota/genetics , Nisin/chemistry , Nisin/pharmacology , Symbiosis/drug effects , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...