Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
APL Bioeng ; 7(3): 036115, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37705891

ABSTRACT

Conventional wet Ag/AgCl electrodes are widely used in electrocardiography, electromyography (EMG), and electroencephalography (EEG) and are considered the gold standard for biopotential measurements. However, these electrodes require substantial skin preparation, are single use, and cannot be used for continuous monitoring (>24 h). For these reasons, dry electrodes are preferable during surface electromyography (sEMG) due to their convenience, durability, and longevity. Dry conductive elastomers (CEs) combine conductivity, flexibility, and stretchability. In this study, CEs combining poly(3,4-ehtylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) in polyurethane are explored as dry, skin contacting EMG electrodes. This study compares these CE electrodes to commercial wet Ag/AgCl electrodes in five subjects, classifying four movements: open hand, fist, wrist extension, and wrist flexion. Classification accuracy is tested using a backpropagation artificial neural network. The control Ag/AgCl electrodes have a 98.7% classification accuracy, while the dry conductive elastomer electrodes have a classification accuracy of 99.5%. As a conclusion, PEDOT based dry CEs were shown to successfully function as on-skin electrodes for EMG recording, matching the performance of Ag/AgCl electrodes, while addressing the need for minimal skin prep, no gel, and wearable technology.

2.
Diagnostics (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35054239

ABSTRACT

The diagnosis and treatment of non-melanoma skin cancer remain urgent problems. Histological examination of biopsy material-the gold standard of diagnosis-is an invasive procedure that requires a certain amount of time to perform. The ability to detect abnormal cells using fluorescence spectroscopy (FS) has been shown in many studies. This technique is rapidly expanding due to its safety, relative cost-effectiveness, and efficiency. However, skin lesion FS-based diagnosis is challenging due to a number of single overlapping spectra emitted by fluorescent molecules, making it difficult to distinguish changes in the overall spectrum and the molecular basis for it. We applied deep learning (DL) algorithms to quantitatively assess the ability of FS to differentiate between pathologies and normal skin. A total of 137 patients with various forms of primary and recurrent basal cell carcinoma (BCC) were observed by a multispectral laser-based device with a built-in neural network (NN) "DSL-1". We measured the fluorescence spectra of suspected non-melanoma skin cancers and compared them with "normal" skin spectra. These spectra were input into DL algorithms to determine whether the skin is normal, pigmented normal, benign, or BCC. The preoperative differential AI-driven fluorescence diagnosis method correctly predicted the BCC lesions. We obtained an average sensitivity of 62% and average specificity of 83% in our experiments. Thus, the presented "DSL-1" diagnostic device can be a viable tool for the real-time diagnosis and guidance of non-melanoma skin cancer resection.

3.
Redox Biol ; 38: 101814, 2021 01.
Article in English | MEDLINE | ID: mdl-33321463

ABSTRACT

An imbalance in angiogenic growth factors and poor utero-placental perfusion are strongly associated with preeclampsia. The reduced utero-placental perfusion (RUPP) model that mimics insufficient placental perfusion is used to study preeclampsia. The aim of this study was to develop a refined RUPP model in C57Bl/6 J mice to test the efficacy of MZe786 as a potential inhibitor of soluble Flt-1 for preeclampsia therapy. Murine RUPP (mRUPP) was induced through bilateral ligation of the ovarian arteries at E11.5 that resulted in typical preeclampsia symptoms including increase in mean arterial pressure (MAP), kidney injury and elevated soluble Flt-1 (sFlt-1) levels in the maternal plasma and amniotic fluid. The murine RUPP kidneys showed tubular and glomerular damage along with increased oxidative stress characterised by increased nitrotyrosine staining. The mRUPP displayed abnormal placental vascular histology, reduced expression of placental cystathionine γ-lyase (CSE), the hydrogen sulfide (H2S) producing enzyme, and resulted in adverse fetal outcomes (FGR). Importantly, oral administration of hydrogen sulfide (H2S)-releasing compound MZe786 from E11.5 to E17.5 successfully prevented the development of preeclampsia. Specifically, MZe786 treatment reduced maternal MAP and kidney nitrotyrosine staining and improved fetal outcome. The circulation levels of sFlt-1 were dramatically decreased in MZe786 treated animals implying that H2S released from MZe786 offered protection by inhibiting sFlt-1 levels. MZe786 prevent preeclampsia and warrant a rapid move to randomised control clinical trial.


Subject(s)
Hydrogen Sulfide , Pre-Eclampsia , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Perfusion , Placenta , Pre-Eclampsia/drug therapy , Pre-Eclampsia/prevention & control , Pregnancy , Rats , Rats, Sprague-Dawley
4.
Biomed Opt Express ; 11(11): 6271-6280, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33282489

ABSTRACT

Wound healing and other surgical technologies traditionally solved by suturing and stapling have recently been enhanced by the application of laser tissue welding. The usage of high energy laser radiation to anastomose tissues eliminates a foreign body reaction, reduces scar formation, and allows for the creation of watertight closure. In the current work, we show that an ultrafast pulsed fibre laser beam with 183 µJ·cm-2 energy fluence at 1550 nm provides successful welding of dissected chicken heart walls with the tensile strength of 1.03±0.12 kg·cm-2 equal to that of native tissue. The welding process was monitored employing fluorescence spectroscopy that detects the biochemical composition of tissues. We believe that fluorescence spectroscopy guided laser tissue welding is a promising approach for decreasing wound healing times and the avoiding risks of postoperative complications.

5.
J Biomed Opt ; 22(8): 1-10, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28825287

ABSTRACT

According to the International Diabetes Federation, the challenge of early stage diagnosis and treatment effectiveness monitoring in diabetes is currently one of the highest priorities in modern healthcare. The potential of combined measurements of skin fluorescence and blood perfusion by the laser Doppler flowmetry method in diagnostics of low limb diabetes complications was evaluated. Using Monte Carlo probabilistic modeling, the diagnostic volume and depth of the diagnosis were evaluated. The experimental study involved 76 patients with type 2 diabetes mellitus. These patients were divided into two groups depending on the degree of complications. The control group consisted of 48 healthy volunteers. The local thermal stimulation was selected as a stimulus on the blood microcirculation system. The experimental studies have shown that diabetic patients have elevated values of normalized fluorescence amplitudes, as well as a lower perfusion response to local heating. In the group of people with diabetes with trophic ulcers, these parameters also significantly differ from the control and diabetes only groups. Thus, the intensity of skin fluorescence and level of tissue blood perfusion can act as markers for various degrees of complications from the beginning of diabetes to the formation of trophic ulcers.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Lower Extremity/blood supply , Tissue Survival/physiology , Case-Control Studies , Female , Fluorescence , Humans , Laser-Doppler Flowmetry , Male , Microcirculation/physiology , Middle Aged , Skin/blood supply
6.
J Biophotonics ; 10(8): 1062-1073, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27714989

ABSTRACT

Bladder cancer is among the most common cancers in the UK and conventional detection techniques suffer from low sensitivity, low specificity, or both. Recent attempts to address the disparity have led to progress in the field of autofluorescence as a means to diagnose the disease with high efficiency, however there is still a lot not known about autofluorescence profiles in the disease. The multi-functional diagnostic system "LAKK-M" was used to assess autofluorescence profiles of healthy and cancerous bladder tissue to identify novel biomarkers of the disease. Statistically significant differences were observed in the optical redox ratio (a measure of tissue metabolic activity), the amplitude of endogenous porphyrins and the NADH/porphyrin ratio between tissue types. These findings could advance understanding of bladder cancer and aid in the development of new techniques for detection and surveillance.


Subject(s)
Optical Imaging , Porphyrins/analysis , Urinary Bladder Neoplasms/diagnostic imaging , Biomarkers, Tumor/analysis , Biopsy , Humans , Oxidation-Reduction , Sensitivity and Specificity , Urinary Bladder
7.
Biomed Opt Express ; 7(4): 1193-200, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27446646

ABSTRACT

Muscle invasive urinary bladder cancer is one of the most lethal cancers and its detection at the time of transurethral resection remains limited and diagnostic methods are urgently needed. We have developed a muscle invasive transitional cell carcinoma (TCC) model of the bladder using porcine bladder scaffold and the human bladder cancer cell line 5637. The progression of implanted cancer cells to muscle invasion can be monitored by measuring changes in the spectrum of endogenous fluorophores such as reduced nicotinamide dinucleotide (NADH) and flavins. We believe this could act as a useful tool for the study of fluorescence dynamics of developing muscle invasive bladder cancer in patients. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

8.
J Biomed Opt ; 21(2): 25006, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26882448

ABSTRACT

Urinary bladder diseases are a common problem throughout the world and often difficult to accurately diagnose. Furthermore, they pose a heavy financial burden on health services. Urinary bladder tissue from male pigs was spectrophotometrically measured and the resulting data used to calculate the absorption, transmission, and reflectance parameters, along with the derived coefficients of scattering and absorption. These were employed to create a "generic" computational bladder model based on optical properties, simulating the propagation of photons through the tissue at different wavelengths. Using the Monte-Carlo method and fluorescence spectra of UV and blue excited wavelength, diagnostically important biomarkers were modeled. Additionally, the multifunctional noninvasive diagnostics system "LAKK-M" was used to gather fluorescence data to further provide essential comparisons. The ultimate goal of the study was to successfully simulate the effects of varying excited radiation wavelengths on bladder tissue to determine the effectiveness of photonics diagnostic devices. With increased accuracy, this model could be used to reliably aid in differentiating healthy and pathological tissues within the bladder and potentially other hollow organs.


Subject(s)
Computer Simulation , Models, Biological , Optical Imaging/methods , Urinary Bladder/anatomy & histology , Urinary Bladder/physiology , Animals , Imaging, Three-Dimensional , Male , Monte Carlo Method , Swine
9.
Med Eng Phys ; 37(6): 574-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25922293

ABSTRACT

Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied. The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.


Subject(s)
Skin/metabolism , Spectrometry, Fluorescence/methods , Adult , Asian People , Black People , Blood Volume/physiology , Computer Simulation , Female , Fingers/blood supply , Forearm/blood supply , Humans , Lasers , Male , Melanins/metabolism , Models, Theoretical , Monte Carlo Method , Skin/blood supply , White People , Young Adult
10.
Biomed Opt Express ; 6(3): 977-86, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25798319

ABSTRACT

The optical redox ratio as a measure of cellular metabolism is determined by an altered ratio between endogenous fluorophores NADH and flavin adenine dinucleotide (FAD). Although reported for other cancer sites, differences in optical redox ratio between cancerous and normal urothelial cells have not previously been reported. Here, we report a method for the detection of cellular metabolic states using flow cytometry based on autofluorescence, and a statistically significant increase in the redox ratio of bladder cancer cells compared to healthy controls. Urinary bladder cancer and normal healthy urothelial cell lines were cultured and redox overview was assessed using flow cytometry. Further localisation of fluorescence in the same cells was carried out using confocal microscopy. Multiple experiments show correlation between cell type and redox ratio, clearly differentiating between healthy cells and cancer cells. Based on our preliminary results, therefore, we believe that this data contributes to current understanding of bladder tissue fluorescence and can inform the design of endoscopic probes. This approach also has significant potential as a diagnostic tool for discrimination of cancer cells among shed urothelial cells in voided urine, and could lay the groundwork for an automated system for population screening for bladder cancer.

11.
J Appl Physiol (1985) ; 106(4): 1311-24, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19131478

ABSTRACT

The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg x kg(-1) x day(-1) ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-beta(1) was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.


Subject(s)
Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Pentoxifylline/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Animals , Calcium/metabolism , Creatine Kinase/metabolism , Electrophysiology , Fluorescent Dyes , Fura-2 , Immunohistochemistry , Isometric Contraction/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Microelectrodes , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fibers, Skeletal/pathology , Patch-Clamp Techniques , Physical Conditioning, Animal/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL