Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
JAMA Cardiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630489

ABSTRACT

Importance: Purinergic receptor P2Y12 (P2Y12) inhibitor monotherapy after a certain period of dual antiplatelet therapy (DAPT) may be an attractive option of maintenance antiplatelet treatment for patients undergoing percutaneous coronary intervention (PCI) who are at both high bleeding and ischemic risk (birisk). Objective: To determine if extended P2Y12 inhibitor monotherapy with clopidogrel is superior to ongoing DAPT with aspirin and clopidogrel after 9 to 12 months of DAPT after PCI in birisk patients with acute coronary syndromes (ACS). Design, Setting, and Participants: This was a multicenter, double-blind, placebo-controlled, randomized clinical trial including birisk patients with ACS who had completed 9 to 12 months of DAPT after drug-eluting stent implantation and were free from adverse events for at least 6 months at 101 China centers between February 2018 and December 2020. Study data were analyzed from April 2023 to May 2023. Interventions: Patients were randomized either to clopidogrel plus placebo or clopidogrel plus aspirin for an additional 9 months. Main Outcomes and Measures: The primary end point was Bleeding Academic Research Consortium (BARC) types 2, 3, or 5 bleeding 9 months after randomization. The key secondary end point was major adverse cardiac and cerebral events (MACCE; the composite of all-cause death, myocardial infarction, stroke or clinically driven revascularization). The primary end point was tested for superiority, and the MACCE end point was tested for sequential noninferiority and superiority. Results: A total of 7758 patients (mean [SD] age, 64.8 [9.0] years; 4575 male [59.0%]) were included in this study. The primary end point of BARC types 2, 3, or 5 bleeding occurred in 95 of 3873 patients (2.5%) assigned to clopidogrel plus placebo and 127 of 3885 patients (3.3%) assigned to clopidogrel plus aspirin (hazard ratio [HR], 0.75; 95% CI, 0.57-0.97; difference, -0.8%; 95% CI, -1.6% to -0.1%; P = .03). The incidence of MACCE was 2.6% (101 of 3873 patients) in the clopidogrel plus placebo group and 3.5% (136 of 3885 patients) in the clopidogrel plus aspirin group (HR, 0.74; 95% CI, 0.57-0.96; difference, -0.9%; 95% CI, -1.7% to -0.1%; P < .001 for noninferiority; P = .02 for superiority). Conclusions and Relevance: Among birisk patients with ACS who completed 9 to 12 months of DAPT after drug-eluting stent implantation and were free from adverse events for at least 6 months before randomization, an extended 9-month clopidogrel monotherapy regimen was superior to continuing DAPT with clopidogrel in reducing clinically relevant bleeding without increasing ischemic events. Trial Registration: ClinicalTrials.gov Identifier: NCT03431142.

2.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652551

ABSTRACT

Acupuncture, a traditional Chinese therapy, is gaining attention for its impact on the brain. While existing electroencephalogram and functional magnetic resonance image research has made significant contributions, this paper utilizes stereo-electroencephalography data for a comprehensive exploration of neurophysiological effects. Employing a multi-scale approach, channel-level analysis reveals notable $\delta $-band activity changes during acupuncture. At the brain region level, acupuncture modulated connectivity between the paracentral lobule and the precentral gyrus. Whole-brain analysis indicates acupuncture's influence on network organization, and enhancing $E_{glob}$ and increased interaction between the motor and sensory cortex. Brain functional reorganization is an important basis for functional recovery or compensation after central nervous system injury. The use of acupuncture to stimulate peripheral nerve trunks, muscle motor points, acupoints, etc., in clinical practice may contribute to the reorganization of brain function. This multi-scale perspective provides diverse insights into acupuncture's effects. Remarkably, this paper pioneers the introduction of stereo-electroencephalography data, advancing our understanding of acupuncture's mechanisms and potential therapeutic benefits in clinical settings.


Subject(s)
Acupuncture Therapy , Electroencephalography , Motor Cortex , Humans , Acupuncture Therapy/methods , Electroencephalography/methods , Motor Cortex/physiology , Male , Adult , Female , Somatosensory Cortex/physiology , Young Adult , Sensorimotor Cortex/physiology , Brain Mapping/methods
3.
Sci Rep ; 14(1): 9924, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688921

ABSTRACT

The High Average Utility Itemset Mining (HAUIM) technique, a variation of High Utility Itemset Mining (HUIM), uses the average utility of the itemsets. Historically, most HAUIM algorithms were designed for static databases. However, practical applications like market basket analysis and business decision-making necessitate regular updates of the database with new transactions. As a result, researchers have developed incremental HAUIM (iHAUIM) algorithms to identify HAUIs in a dynamically updated database. Contrary to conventional methods that begin from scratch, the iHAUIM algorithm facilitates incremental changes and outputs, thereby reducing the cost of discovery. This paper provides a comprehensive review of the state-of-the-art iHAUIM algorithms, analyzing their unique characteristics and advantages. First, we explain the concept of iHAUIM, providing formulas and real-world examples for a more in-depth understanding. Subsequently, we categorize and discuss the key technologies used by varying types of iHAUIM algorithms, encompassing Apriori-based, Tree-based, and Utility-list-based techniques. Moreover, we conduct a critical analysis of each mining method's advantages and disadvantages. In conclusion, we explore potential future directions, research opportunities, and various extensions of the iHAUIM algorithm.

4.
Chem Asian J ; 19(10): e202400198, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38558255

ABSTRACT

The ideal and highly anticipated dressing for skin wounds should provide a moist environment, possess antibacterial properties, and ensure sustained drug release. In the present work, a hyaluronic acid-based hydrogel was formed by cross-linking crocetin and CaCO3@polyelectrolyte materials (CaCO3@PEM) microspheres with HA hydrogels via hydrogen bond and amido bonding (CaCO3@PEM@Cro@HA hydrogel, CPC@HA hydrogel). Moreover, the CPC@HA hydrogel had the capability of sustained, controlled release of calcium ions and crocetin via pH-sensitive and accelerated skin wound healing. The experiment results showed that the CPC@HA hydrogel exhibited porous network structures, stable physical properties, and had antibacterial properties and biocompatibility in vitro. In addition, the CPC@HA hydrogel covering on the skin wound could reduce inflammation and promote wound healing. The high expression of angiogenic cytokines (CD31) and epidermal terminal differentiation markers (Loricrin) of wound healing tissue suggested the CPC@HA hydrogel also had the function of promoting the remodeling of regenerated skin. Overall, CPC@HA hydrogel has promising potential for clinical applications in accelerating skin wound repair.


Subject(s)
Calcium , Carotenoids , Hydrogels , Vitamin A , Wound Healing , Wound Healing/drug effects , Vitamin A/analogs & derivatives , Vitamin A/pharmacology , Vitamin A/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Calcium/metabolism , Animals , Carotenoids/chemistry , Carotenoids/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Liberation , Mice , Ions/chemistry , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
5.
Cancer Med ; 13(9): e7177, 2024 May.
Article in English | MEDLINE | ID: mdl-38686615

ABSTRACT

OBJECTIVE: To evaluate the effectiveness, safety, and convenience of in-class transition (iCT) from intravenous bortezomib-based induction to ixazomib-based oral regimens. METHODS: This retrospective real-world study was conducted in 16 Chinese hospitals between October 2017 and April 2023 and analyzed newly diagnosed (NDMM) and first-line relapsed multiple myeloma (FRMM) patients who attained at least a partial response from bortezomib-based induction therapy, followed by an ixazomib-based oral regimen for 2 year or until disease progression or intolerable toxicity. RESULTS: The study enrolled 199 patients, median age: 63 years old, male 55.4%, 53% as high risk (HR), and 47% as standard risk. Cytogenetic risk stratification by metaphase fluorescence in situ hybridization (M-FISH), based on the Mayo Clinic risk stratification system. The median duration of total PI therapy was 11 months, with ixazomib-based treatment spanning 6 months. At the 20-month median follow-up, 53% of patients remained on therapy. The 24-month PFS rate was 84.3% from the initiation of bortezomib-based induction and 83.4% from the start of ixazomib-based treatment. Overall response rate (ORR) was 100% post-bortezomib induction and 90% following 6 cycles of the ixazomib-based regimen. Based on the Sankey diagrams, 89.51% of patients maintained or improved their disease response after 2 cycles of iCT, 6 cycles (90.14%), and 12 cycles (80%). The HR level of Mayo was found to be a significant independent factor in a worse remission (hazard ratio (HR) 2.55; p = 0.033). Ixazomib's safety profile aligned with previous clinical trial data, with 49% of patients experiencing at least one AE of any grade. The most common AEs included peripheral neuropathy, nausea and vomiting, diarrhea, thrombocytopenia, and granulocytopenia. CONCLUSION: In the real-world Chinese MM population, NDMM and FRMM patients responded favorably to PI-based continuous therapy, demonstrating substantial response rates. The ixazomib-based iCT allows for sustained PI-based treatment, offering promising efficacy and tolerable AEs.


Subject(s)
Boron Compounds , Bortezomib , Glycine , Glycine/analogs & derivatives , Multiple Myeloma , Proteasome Inhibitors , Humans , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Boron Compounds/adverse effects , Male , Glycine/administration & dosage , Glycine/therapeutic use , Glycine/adverse effects , Multiple Myeloma/drug therapy , Middle Aged , Female , Aged , Retrospective Studies , Proteasome Inhibitors/therapeutic use , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/adverse effects , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Bortezomib/adverse effects , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Administration, Oral , China , Aged, 80 and over
6.
NPJ Precis Oncol ; 8(1): 61, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431733

ABSTRACT

Tertiary lymphoid structure (TLS) contributes to the anti-tumor immune response, and predicts the prognosis of colorectal cancer patients. However, the potential impact of TLS in shaping the immune status of rectal adenocarcinoma, and the intrinsic relationship between TLS and neoadjuvant therapies (neoTx) remain unclear. We performed hematoxylin-eosin staining, immunohistochemical and biomolecular analyses to investigate TLS and tumor-infiltrating lymphocytes (TILs) in 221 neoTx-treated and 242 treatment-naïve locally advanced rectal cancer (LARC) patients. High TLS density was significantly associated with the absence of vascular invasion, a lower neutrophil-to-lymphocyte ratio, increased TLS maturity, a longer recurrence-free survival (RFS) (hazard ratio [HR] 0.2985 95% confidence interval [CI] 0.1894-0.4706, p < 0.0001) and enhanced infiltration of adaptive immune cells. Biomolecular analysis showed that high TLS-score was strongly associated with more infiltration of immune cells and increased activation of immune-related pathways. TLS+ tumors in pre-treatment specimens were associated with a higher proportion of good respond (62.5% vs. 29.8%, p < 0.0002) and pathological complete remission (pCR) (40.0% vs. 11.1%, p < 0.0001), and significantly increased RFS (HR 0.3574 95%CI 0.1489-0.8578 p = 0.0213) compared with TLS- tumors in the neoTx cohort, which was confirmed in GSE119409 and GSE150082. Further studies showed that neoTx significantly reduced TLS density and maturity, and abolished the prognostic value of TLS. Our study illustrates that TLS may have a key role in mediating the T-cell-inflamed tumor microenvironment, which also provides a new direction for neoTx, especially neoadjuvant immunotherapy, in LRAC patients.

7.
Mol Biol Rep ; 51(1): 313, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374452

ABSTRACT

BACKGROUND: Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE: This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS: Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS: Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION: In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.


Subject(s)
Brain Injuries, Traumatic , Glucagon-Like Peptide 1 , Neuroprotective Agents , Animals , Male , Rats , Apoptosis , Brain Injuries, Traumatic/drug therapy , Disease Models, Animal , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Hippocampus , Neuroprotective Agents/pharmacology , Oxidative Stress , Rats, Sprague-Dawley , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Mitogen-Activated Protein Kinase 7/drug effects , Mitogen-Activated Protein Kinase 7/metabolism , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism
8.
Molecules ; 29(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338365

ABSTRACT

The influenza BM2 transmembrane domain (BM2TM), an acid-activated proton channel, is an attractive antiviral target due to its essential roles during influenza virus replication, whereas no effective inhibitors have been reported for BM2. In this study, we draw inspiration from the properties of cyclodextrins (CDs) and hypothesize that CDs of appropriate sizes may possess the potential to act as inhibitors of the BM2TM proton channel. To explore this possibility, molecular dynamics simulations were employed to assess their inhibitory capabilities. Our findings reveal that CD4, CD5, and CD6 are capable of binding to the BM2TM proton channel, resulting in disrupted water networks and reduced hydrogen bond occupancy between H19 and the solvent within the BM2TM channel necessary for proton conduction. Notably, CD4 completely obstructs the BM2TM water channel. Based on these observations, we propose that CD4, CD5, and CD6 individually contribute to diminishing the proton transfer efficiency of the BM2 protein, and CD4 demonstrates promising potential as an inhibitor for the BM2 proton channel.


Subject(s)
Cyclodextrins , Influenza, Human , Humans , Protons , Cyclodextrins/pharmacology , Cyclodextrins/metabolism , Influenza B virus/chemistry , Influenza B virus/metabolism , Molecular Dynamics Simulation , Viral Matrix Proteins/chemistry
9.
Int Immunopharmacol ; 129: 111656, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38340422

ABSTRACT

Geraniin, a chemical component of the traditional Chinese medicine geranii herba, possesses anti-inflammatory and anti-oxidative activities. However, its anti-inflammatory role in managing NLRP3 inflammasome and pyroptosis remains to be elucidated. To investigate the anti-inflammation mechanism of geraniin, LPS-primed macrophages were incubated with classical activators of NLRP3 inflammasome (such as ATP, Nigericin, or MSU crystals), and MSU crystals were injected into the ankle joints of mice to establish an acute gouty arthritis model. The propidium iodide (PI) staining results showed that geraniin could restrain cell death in the ATP- or nigericin-stimulated bone marrow-derived macrophages (BMDMs). Geraniin decreased the release of lactate dehydrogenase (LDH) and interleukin (IL)-1ß from cytoplasm to cell supernatant. Geraniin also inhibited the expression of caspase-1 p20, IL-1ß in cell supernatant and N-terminal of gasdermin D (GSDMD-NT) while blocking the oligomerization of ASC to form speck. The inhibitory effects of geraniin on caspase-1 p20, IL-1ß, GSDMD-NT, and ASC speck were not observed in NLRP3 knockout (NLRP3-/-) BMDMs. Hence, the resistance of geraniin to inflammasome and pyroptosis was contingent upon NLRP3 presence. Geraniin reduced reactive oxygen species (ROS) production and maintained mitochondrial membrane potential while preventing interaction between ASC and NLRP3 protein. Additionally, geraniin diminished MSU crystal-induced mouse ankle joint swelling and IL-1ß expression. Geraniin blocked the recruitment of neutrophils and macrophages to the synovium of joints. Our results demonstrate that geraniin prevents the assembly of ASC and NLRP3 through its antioxidant effect, thereby inhibiting inflammasome activation, pyroptosis, and IL-1ß release to provide potential insights for gouty arthritis targeted therapy.


Subject(s)
Arthritis, Gouty , Glucosides , Hydrolyzable Tannins , Inflammasomes , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Arthritis, Gouty/chemically induced , Pyroptosis , Nigericin/pharmacology , Macrophages , Anti-Inflammatory Agents/adverse effects , Adenosine Triphosphate/metabolism , Caspases/metabolism , Interleukin-1beta/metabolism
10.
iScience ; 27(2): 108847, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38313047

ABSTRACT

The integration of stereoelectroencephalography with therapeutic deep brain stimulation (DBS) holds immense promise as a viable approach for precise treatment of refractory disorders, yet it has not been explored in the domain of headache or pain management. Here, we implanted 14 electrodes in a patient with refractory migraine and integrated clinical assessment and electrophysiological data to investigate personalized targets for refractory headache treatment. Using statistical analyses and cross-validated machine-learning models, we identified high-frequency oscillations in the right nucleus accumbens as a critical headache-related biomarker. Through a systematic bipolar stimulation approach and blinded sham-controlled survey, combined with real-time electrophysiological data, we successfully identified the left dorsal anterior cingulate cortex as the optimal target for the best potential treatment. In this pilot study, the concept of the herein-proposed data-driven approach to optimizing precise and personalized treatment strategies for DBS may create a new frontier in the field of refractory headache and even pain disorders.

11.
Glob Med Genet ; 11(1): 86-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38414979

ABSTRACT

The fusion genes NRG1 and NRG2 , members of the epidermal growth factor (EGF) receptor family, have emerged as key drivers in cancer. Upon fusion, NRG1 retains its EGF-like active domain, binds to the ERBB ligand family, and triggers intracellular signaling cascades, promoting uncontrolled cell proliferation. The incidence of NRG1 gene fusion varies across cancer types, with lung cancer being the most prevalent at 0.19 to 0.27%. CD74 and SLC3A2 are the most frequently observed fusion partners. RNA-based next-generation sequencing is the primary method for detecting NRG1 and NRG2 gene fusions, whereas pERBB3 immunohistochemistry can serve as a rapid prescreening tool for identifying NRG1 -positive patients. Currently, there are no approved targeted drugs for NRG1 and NRG2 . Common treatment approaches involve pan-ERBB inhibitors, small molecule inhibitors targeting ERBB2 or ERBB3, and monoclonal antibodies. Given the current landscape of NRG1 and NRG2 in solid tumors, a consensus among diagnostic and treatment experts is proposed, and clinical trials hold promise for benefiting more patients with NRG1 and NRG2 gene fusion solid tumors.

12.
Nat Struct Mol Biol ; 31(4): 610-620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38177682

ABSTRACT

The chemotaxis of CD4+ type 1 helper cells and CD8+ cytotoxic lymphocytes, guided by interferon-inducible CXC chemokine 9-11 (CXCL9-11) and CXC chemokine receptor 3 (CXCR3), plays a critical role in type 1 immunity. Here we determined the structures of human CXCR3-DNGi complexes activated by chemokine CXCL11, peptidomimetic agonist PS372424 and biaryl-type agonist VUF11222, and the structure of inactive CXCR3 bound to noncompetitive antagonist SCH546738. Structural analysis revealed that PS372424 shares a similar orthosteric binding pocket to the N terminus of CXCL11, while VUF11222 buries deeper and activates the receptor in a distinct manner. We showed an allosteric binding site between TM5 and TM6, accommodating SCH546738 in the inactive CXCR3. SCH546738 may restrain the receptor at an inactive state by preventing the repacking of TM5 and TM6. By revealing the binding patterns and the pharmacological properties of the four modulators, we present the activation mechanisms of CXCR3 and provide insights for future drug development.


Subject(s)
Chemokines, CXC , Receptors, CXCR3 , Humans , Receptors, CXCR3/metabolism , Ligands , Chemokines, CXC/metabolism , Binding Sites , Protein Binding
13.
Sci Rep ; 14(1): 945, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200028

ABSTRACT

With the rapid development of AI and big data mining technologies, computerized medical decision-making has become increasingly prominent. The aim of high-utility pattern mining (HUPM) is to discover meaningful patterns in medical databases that contribute to maximizing the utility from the perspective of diagnosis. However, HUPM pays less attention to the interpretability and explainability of these patterns in medical decision-making scenarios. This paper proposes a novel algorithm called the Improved fuzzy high-utility pattern mining (IF-HUPM) to address this problem. First, the paper applies a fuzzy preprocessing method to divide the fuzzy intervals of a medical quantitative data set, which enhances the fuzziness and interpretability of the data. Next, in the process of IF-HUPM, both fuzzy tree and list structures are employed to calculate fuzzy high-utility values. By combining the characteristics of the one-stage and two-stage algorithms of HUPM, an adaptive-phase Fuzzy HUPM hybrid frame is proposed. The experimental results demonstrate that the proposed IF-HUPM algorithm enhances both accuracy and efficiency and the mining process requires less time and space on average.

14.
Front Oncol ; 13: 1280529, 2023.
Article in English | MEDLINE | ID: mdl-38090506

ABSTRACT

Background: Transformation of endometriosis to malignancy is a rare occurrence. Clear cell ovarian cancer and endometrioid ovarian cancer are the two histotypes most consistently linked to endometriosis. The exact pathways leading to malignant transformation of endometriosis remain elusive. Case presentation: A 41-year-old woman presented to our hospital with a ten days history of abdominal pain which was not responsive to medication. Pathological examination revealed an unexpected finding of bilateral endometriosis associated with distinct malignancies: a clear cell carcinoma in the right ovary and a well-differentiated endometrioid carcinoma in the left ovary. Molecular analysis indicated a shared somatic driver mutation in ING1 in the eutopic endometrium and the bilateral ovaries while simultaneously exhibiting specific genetic alterations unique to each carcinoma. Notably, several common mutation sites were also identified, including previously reported common oncogenes (KRAS, PIK3CA, ARID1A). This finding prompts the hypothesis of a possible monoclonal origin of the two tumours. Conclusion: This case represents an exceedingly rare occurrence of two different histotypes of ovarian endometriosis-associated cancer manifesting simultaneously in bilateral ovaries. Based on genetic analysis, we hypothesize that these malignancies may have a monoclonal origin, providing insights into understanding the different biological mechanisms underlying carcinogenesis.

15.
Cartilage ; : 19476035231207778, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37997349

ABSTRACT

OBJECTIVE: MicroRNAs (miRNAs) play a key role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Our previous study found that novel-miR-81 can relieve osteoarthritis, but its role in chondrogenic differentiation of BMSCs remains unclear. The purpose of this study was to explore the role of novel-miR-81 in chondrogenic differentiation of BMSCs. METHODS: We used a model in which transforming growth factor (TGF)-ß3-induced BMSCs differentiation into chondrocytes. We detected the expression Sox9, Collagen Ⅱ, Aggrecan, novel-miR-81, and Rac2 by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot was performed to detect the expression of Sox9, Collagen Ⅱ, and Rac2. Dual-luciferase reporter gene assay confirmed that the association between novel-miR-81 and Rac2. In addition, the ectopic chondrocyte differentiation of BMSCs was performed subcutaneously in nude mice. The effect of novel-miR-81 and Rac2 on ectopic chondrogenic differentiation of BMSCs was determined by immunohistochemical staining. RESULTS: Novel-miR-81 upregulated in chondrogenic differentiation of BMSCs. Rac2 was a key target of novel-miR-81. Mimic novel-miR-81 and siRac2 upregulated the expression of Sox9, Collagen Ⅱ, and Aggrecan. CONCLUSION: Novel-miR-81 promotes the chondrocytes differentiation of BMSCs by inhibiting the expression of target gene Rac2, which provides potential targets for BMSCs transplantation to repair cartilage defects.

16.
Bioinspir Biomim ; 18(6)2023 10 17.
Article in English | MEDLINE | ID: mdl-37846869

ABSTRACT

We propose a method for extending the virtual aperture of the small aperture high-frequency surface wave radar multielement array inspired by a fly namedOrmia ochracea. Despite the tremendous incompatibility between its ear and the incoming wavelength,Ormiacan accurately local the sound of its host cricket. This ability benefits from the coupled structure ofOrmia's ears which have been modelled as a mechanical vibration system. In this paper, we first design a two-degree of freedom biologically inspired coupled system by mimickingOrmia's coupled ears. We quantitatively analyze its extension capability to the array aperture and construct the received signal model of the virtual array. We then analyze its response characteristic and available frequency band. To achieve the applications of arbitrary desired frequencies, we propose a frequency conversion algorithm. Moreover, we design two multi-degree of freedom biologically inspired coupled systems for the multielement array We summarize the criteria for extending the degree of freedom and optimize these two systems to address their respective shortcomings. Numerical results give the optimal system parameters for our desired frequency and validate the frequency conversion algorithm. By comparing the radiation pattern of the inspired arrays (arrays with the proposed systems) with that of an ordinary array, we demonstrate the virtual aperture extension capability of our proposed method. We also verify the effectiveness of proposed method by processing the actual received signals of the array.


Subject(s)
Radar , Vibration , Equipment Design , Sound , Algorithms
17.
BMC Cancer ; 23(1): 930, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784037

ABSTRACT

BACKGROUND: Nonsecretory multiple myeloma (NSMM) is a rare type of multiple myeloma (MM). Few studies have described the clinical features and outcomes of NSMM in novel agents. Additionally, the prognostic characteristics have remained controversial in recent years. PURPOSE: To investigate the clinical and prognostic features of NSMM and explore the prognostic value of involved free light chain (FLC) levels in NSMM patients in the Chinese population. METHODS: We retrospectively enrolled 176 newly diagnosed NSMM cases between January 2005 and December 2021 from 19 clinical centers in China. The control group was selected using a 1:4 propensity score matching technique of newly diagnosed secretory MM, with age, sex and diagnosis time as the matching variables. RESULTS: The median age of NSMM patients was 60 years, and 22.6% of patients were classified as ISS stage 3. The ORR of the NSMM patients was 87.4%, and the CR was 65.8%. Compared to the matched secretory MM patients, more NSMM patients achieved CR after first-line treatment (65.8% vs. 36%, p = 0.000). The ORR of first-line treatment was not significantly different between NSMM and secretory MM (89.45% vs. 84.7%, p = 0.196). The first-line PFS was 27.5 m and 23 m (p = 0.063), and the median OS was 81 m and 70 months (p = 0.401). However, for CR-achieved NSMM and CR-not-achieved NSMM patients, the median PFS was 37 m vs. 16 m (p = 0.021), while the median OS showed no difference (107 m vs. 87 m, p = 0.290). In multivariate analysis, the significant factors for PFS were age ≥ 65 and ISS-3. ISS-3 was the only independent prognostic factor of OS. The iFLC ≥ 50 mg/L group had a high ORR of 97.3%, and the median PFS and OS were 48 m and NR, respectively. Compared to the matched secretory MM, the iFLC ≥ 50 mg/L group also showed more CR and longer OS (NR vs. 70 m, p = 0.006) and PFS (48 m vs. 23 m, p = 0.003). CONCLUSIONS: Our results revealed that Chinese NSMM patients are younger and have a higher CR but not superior survival. The subgroup of NSMM patients with iFLC ≥ 50 mg/L had better outcomes than secretory MM.


Subject(s)
Multiple Myeloma , Humans , Middle Aged , Multiple Myeloma/drug therapy , Treatment Outcome , Retrospective Studies , Prognosis , China/epidemiology
18.
Oncogene ; 42(47): 3491-3502, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828220

ABSTRACT

Cell senescence deters the activation of various oncogenes. Induction of senescence is, therefore, a potentially effective strategy to interfere with vital processes in tumor cells. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in various cancer types, including ovarian cancer. The mechanism by which S1PR1 regulates ovarian cancer cell senescence is currently elusive. In this study, we demonstrate that S1PR1 was highly expressed in human ovarian cancer tissues and cell lines. S1PR1 deletion inhibited the proliferation and migration of ovarian cancer cells. S1PR1 deletion promoted ovarian cancer cell senescence and sensitized ovarian cancer cells to cisplatin chemotherapy. Exposure of ovarian cancer cells to sphingosine-1-phosphate (S1P) increased the expression of 3-phosphatidylinositol-dependent protein kinase 1 (PDK1), decreased the expression of large tumor suppressor 1/2 (LATS1/2), and induced phosphorylation of Yes-associated protein (p-YAP). Opposite results were obtained in S1PR1 knockout cells following pharmacological inhibition. After silencing LATS1/2 in S1PR1-deficient ovarian cancer cells, senescence was suppressed and S1PR1 expression was increased concomitantly with YAP expression. Transcriptional regulation of S1PR1 by YAP was confirmed by chromatin immunoprecipitation. Accordingly, the S1PR1-PDK1-LATS1/2-YAP pathway regulates ovarian cancer cell senescence and does so through a YAP-mediated feedback loop. S1PR1 constitutes a druggable target for the induction of senescence in ovarian cancer cells. Pharmacological intervention in the S1PR1-PDK1-LATS1/2-YAP signaling axis may augment the efficacy of standard chemotherapy.


Subject(s)
Ovarian Neoplasms , Protein Kinases , Female , Humans , Sphingosine-1-Phosphate Receptors/genetics , Ovarian Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cellular Senescence/genetics , Cell Proliferation/genetics
19.
Nat Commun ; 14(1): 5870, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735451

ABSTRACT

Crystal-field perturbation is theoretically the most direct and effective method of achieving highly efficient photoluminescence from trivalent lanthanide (Ln3+) ions through breaking the parity-forbidden nature of their 4f-transitions. However, exerting such crystal-field perturbation remains an arduous task even in well-developed Ln3+-doped luminescent nanocrystals (NCs). Herein, we report crystal-field perturbation through interstitial H+-doping in orthorhombic-phase NaMgF3:Ln3+ NCs and achieve a three-orders-of-magnitude emission amplification without a distinct lattice distortion. Mechanistic studies reveal that the interstitial H+ ions perturb the local charge density distribution, leading to anisotropic polarization of the F- ligand, which affects the highly symmetric Ln3+-substituted [MgF6]4- octahedral clusters. This effectively alleviates the parity-forbidden selective rule to enhance the 4f-4 f radiative transition rate of the Ln3+ emitter and is directly corroborated by the apparent shortening of the radiative recombination lifetime. The interstitially H+-doped NaMgF3:Yb/Er NCs are successfully used as bioimaging agents for real-time vascular imaging. These findings provide concrete evidence for crystal-field perturbation effects and promote the design of Ln3+-doped luminescent NCs with high brightness.

20.
J Bioenerg Biomembr ; 55(5): 341-352, 2023 10.
Article in English | MEDLINE | ID: mdl-37610521

ABSTRACT

Epigenetic regulation has crucial implications for myocardial fibrosis. It has been reported that autophagy, regulated by miR-145, is implicated in the proliferation and fibrosis of cardiac fibroblasts (CFs). However, how it works during the process remains unclear. This study explored the exact effects of epigenetic regulation of miR-145 expression on autophagy, proliferation, and fibrosis of CFs. To examine the expression levels of myocardial fibrosis markers (α-SMA and collagen I), autophagy-related proteins (LC3I, LC3II, p62), DNMT3A, and miR-145, qRT-PCR and western blot were employed. And the proliferation of CFs was detected by CCK-8 and ErdU. As for the determination of the binding relationship between DNMT3A and miR-145, dual-luciferase assay was conducted. Next, the detection of the methylation level of the pre-miR-145 promoter region was completed by MSP. And the verification of the effect of the DNMT3A/miR-145 axis on myocardial fibrosis was accomplished by constructing mouse myocardial infarction (MI) models based on the ligation of the left anterior descending method. In TGF-ß1-activated CFs, remarkable up-regulation of DNMT3 and considerable down-regulation of miR-145 were observed. And further experiments indicated that DNMT3A was able to down-regulate miR-145 expression by maintaining the hypermethylation level of the pre-miR-145 promoter region. In addition, DNMT3A expression could be directly targeted and negatively modulated by miR-145. Moreover, in vitro cell experiments and mouse MI models demonstrated that DNMT3A overexpression could inhibit autophagy, and promote cell proliferation and fibrosis of CFs. However, this kind of effect could be reversed by miR-145 overexpression. In summary, myocardial fibroblast autophagy can be regulated by bidirectional negative feedback actions of DNMT3A and miR-145, thus affecting myocardial fibrosis. This finding will provide a potential target for the clinical treatment of myocardial fibrosis.


Subject(s)
MicroRNAs , Myocardial Infarction , Animals , Mice , Autophagy , Epigenesis, Genetic , Feedback , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardium/metabolism , Colorectal Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...