Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(46): eadf8764, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37976357

ABSTRACT

Leukotrienes, a class of inflammatory bioactive lipids, are well studied in the periphery, but less is known of their importance in the brain. We identified that the enzyme leukotriene A4 hydrolase (LTA4H) is expressed in healthy mouse neurons, and inhibition of LTA4H in aged mice improves hippocampal dependent memory. Single-cell nuclear RNA sequencing of hippocampal neurons after inhibition reveals major changes to genes important for synaptic organization, structure, and activity. We propose that LTA4H inhibition may act to improve cognition by directly inhibiting the enzymatic activity in neurons, leading to improved synaptic function. In addition, LTA4H plasma levels are increased in both aging and Alzheimer's disease and correlated with cognitive impairment. These results identify a role for LTA4H in the brain, and we propose that LTA4H inhibition may be a promising therapeutic strategy to treat cognitive decline in aging related diseases.


Subject(s)
Cognitive Dysfunction , Epoxide Hydrolases , Mice , Animals , Epoxide Hydrolases/chemistry , Cognitive Dysfunction/drug therapy
2.
Cell Chem Biol ; 30(8): 976-986.e5, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37413985

ABSTRACT

WNTs are essential factors for stem cell biology, embryonic development, and for maintaining homeostasis and tissue repair in adults. Difficulties in purifying WNTs and their lack of receptor selectivity have hampered research and regenerative medicine development. While breakthroughs in WNT mimetic development have overcome some of these difficulties, the tools developed so far are incomplete and mimetics alone are often not sufficient. Here, we developed a complete set of WNT mimetic molecules that cover all WNT/ß-catenin-activating Frizzleds (FZDs). We show that FZD1,2,7 stimulate salivary gland expansion in vivo and salivary gland organoid expansion. We further describe the discovery of a novel WNT-modulating platform that combines WNT and RSPO mimetics' effects into one molecule. This set of molecules supports better organoid expansion in various tissues. These WNT-activating platforms can be broadly applied to organoids, pluripotent stem cells, and in vivo research, and serve as bases for future therapeutic development.


Subject(s)
Pluripotent Stem Cells , beta Catenin , beta Catenin/metabolism , Wnt Signaling Pathway
3.
Brain Behav ; 12(9): e2736, 2022 09.
Article in English | MEDLINE | ID: mdl-35971662

ABSTRACT

INTRODUCTION: Increasing age is the number one risk factor for developing cognitive decline and neurodegenerative disease. Aged humans and mice exhibit numerous molecular changes that contribute to a decline in cognitive function and increased risk of developing age-associated diseases. Here, we characterize multiple age-associated changes in male C57BL/6J mice to understand the translational utility of mouse aging. METHODS: Male C57BL/6J mice from various ages between 2 and 24 months of age were used to assess behavioral, as well as, histological and molecular changes across three modalities: neuronal, microgliosis/neuroinflammation, and the neurovascular unit (NVU). Additionally, a cohort of 4- and 22-month-old mice was used to assess blood-brain barrier (BBB) breakdown. Mice in this cohort were treated with a high, acute dose of lipopolysaccharide (LPS, 10 mg/kg) or saline control 6 h prior to sacrifice followed by tail vein injection of 0.4 kDa sodium fluorescein (100 mg/kg) 2 h later. RESULTS: Aged mice showed a decline in cognitive and motor abilities alongside decreased neurogenesis, proliferation, and synapse density. Further, neuroinflammation and circulating proinflammatory cytokines were increased in aged mice. Additionally, we found changes at the BBB, including increased T cell infiltration in multiple brain regions and an exacerbation in BBB leakiness following chemical insult with age. There were also a number of readouts that were unchanged with age and have limited utility as markers of aging in male C57BL/6J mice. CONCLUSIONS: Here we propose that these changes may be used as molecular and histological readouts that correspond to aging-related behavioral decline. These comprehensive findings, in the context of the published literature, are an important resource toward deepening our understanding of normal aging and provide an important tool for studying aging in mice.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Aging/physiology , Animals , Cognitive Dysfunction/pathology , Cytokines/metabolism , Fluorescein/metabolism , Hippocampus/metabolism , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL
4.
Sci Rep ; 8(1): 2766, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426846

ABSTRACT

Cues signaling the availability of palatable food acquire the ability to potentiate food seeking and consumption. The current study employed a combination of behavioral, pharmacological, and analytical techniques to probe the role of Pavlovian incentive motivation in cue-potentiated feeding. We show that a cue paired with sucrose solution (CS+) can transfer its control over feeding to stimulate sucrose consumption at a new receptacle, and that this effect depends on activation of D1 dopamine receptors, which is known to modulate other forms of cue-motivated behavior but not taste palatability. Microstructural analyses of sucrose-licking behavior revealed that the CS+ tended to increase the frequency with which rats engaged in active bouts of licking behavior without having a reliable effect on the duration of those licking bouts, a measure that was instead associated with sucrose palatability. Furthermore, we found that individual differences in CS+ elicited increases in bout frequency were associated with total sucrose intake at test, supporting the view that this process was related to meaningful dysregulation of eating behavior. The current study, therefore, (1) demonstrates that a dopamine-dependent Pavlovian incentive motivational process can mediate cue-potentiated feeding, and (2) lays out an experimental and analytical approach for parsing this aspect of behavior.


Subject(s)
Conditioning, Classical/physiology , Feeding Behavior/psychology , Motivation/physiology , Reward , Animals , Cues , Dopamine/physiology , Male , Rats , Rats, Long-Evans , Receptors, Dopamine D1/agonists , Sucrose
5.
PLoS One ; 12(7): e0180907, 2017.
Article in English | MEDLINE | ID: mdl-28708901

ABSTRACT

It has been hypothesized that brain development during adolescence perturbs reward processing in a way that may ultimately contribute to the risky decision making associated with this stage of life, particularly in young males. To investigate potential reward dysfunction during adolescence, Experiment 1 examined palatable fluid intake in rats as a function of age and sex. During a series of twice-weekly test sessions, non-food-deprived rats were given the opportunity to voluntarily consume a highly palatable sweetened condensed milk (SCM) solution. We found that adolescent male, but not female, rats exhibited a pronounced, transient increase in SCM intake (normalized by body weight) that was centered around puberty. Additionally, adult females consumed more SCM than adult males and adolescent females. Using a well-established analytical framework to parse the influences of reward palatability and satiety on the temporal structure of feeding behavior, we found that palatability-driven intake at the outset of the meal was significantly elevated in adolescent males, relative to the other groups. Furthermore, although we found that there were some group differences in the onset of satiety, they were unlikely to contribute to differences in intake. Experiment 2 confirmed that adolescent male rats exhibit elevated palatable fluid consumption, relative to adult males, even when a non-caloric saccharin solution was used as the taste stimulus, demonstrating that these results were unlikely to be related to age-related differences in metabolic need. These findings suggest that elevated palatable food intake during adolescence is sex specific and driven by a fundamental change in reward processing. As adolescent risk taking has been hypothesized as a potential result of hypersensitivity to and overvaluation of appetitive stimuli, individual differences in reward palatability may factor into individual differences in adolescent risky decision making.


Subject(s)
Eating , Feeding Behavior/physiology , Aging , Animals , Body Weight , Female , Male , Rats , Rats, Long-Evans , Sexual Maturation , Sweetening Agents , Taste
6.
Eur J Neurosci ; 45(3): 358-364, 2017 02.
Article in English | MEDLINE | ID: mdl-27813263

ABSTRACT

The dorsomedial striatum (DMS) has been strongly implicated in flexible, outcome-based decision making, including the outcome-specific Pavlovian-to-instrumental transfer effect (PIT), which measures the tendency for a reward-predictive cue to preferentially motivate actions that have been associated with the predicted reward over actions associated with different rewards. Although the neurochemical underpinnings of this effect are not well understood, there is growing evidence that striatal acetylcholine signaling may play an important role. This study investigated this hypothesis by assessing the effects of intra-DMS infusions of the nicotinic antagonist mecamylamine or the muscarinic antagonist scopolamine on expression of specific PIT in rats. These treatments produced dissociable behavioral effects. Mecamylamine infusions enhanced rats' tendency to use specific cue-elicited outcome expectations to select whichever action was trained with the predicted outcome, relative to their performance when tested after vehicle infusions. In contrast, scopolamine infusions appeared to render instrumental performance insensitive to this motivational influence of reward-paired cues. These drug treatments had no detectable effect on conditioned food cup approach behavior, indicating that they selectively perturbed cue-guided action selection without producing more wide-ranging alterations in behavioral control. Our findings reveal an important role for DMS acetylcholine signaling in modulating the impact of cue-evoked reward expectations on instrumental action selection.


Subject(s)
Cholinergic Antagonists/pharmacology , Corpus Striatum/drug effects , Cues , Mecamylamine/pharmacology , Reward , Scopolamine/pharmacology , Animals , Conditioning, Classical/drug effects , Conditioning, Operant/drug effects , Corpus Striatum/physiology , Male , Rats , Rats, Sprague-Dawley
7.
Front Psychiatry ; 7: 44, 2016.
Article in English | MEDLINE | ID: mdl-27047400

ABSTRACT

It has been proposed that compulsive drug seeking reflects an underlying dysregulation in adaptive behavior that favors habitual (automatic and inflexible) over goal-directed (deliberative and highly flexible) action selection. Rodent studies have established that repeated exposure to cocaine or amphetamine facilitates the development of habits, producing behavior that becomes unusually insensitive to a reduction in the value of its outcome. The current study more directly investigated the effects of cocaine pre-exposure on goal-directed learning and action selection using an approach that discourages habitual performance. After undergoing a 15-day series of cocaine (15 or 30 mg/kg, i.p.) or saline injections and a drug withdrawal period, rats were trained to perform two different lever-press actions for distinct reward options. During a subsequent outcome devaluation test, both cocaine- and saline-treated rats showed a robust bias in their choice between the two actions, preferring whichever action had been trained with the reward that retained its value. Thus, it appears that the tendency for repeated cocaine exposure to promote habit formation does not extend to a more complex behavioral scenario that encourages goal-directed control. To further explore this issue, we assessed how prior cocaine treatment would affect the rats' ability to learn about a selective reduction in the predictive relationship between one of the two actions and its outcome, which is another fundamental feature of goal-directed behavior. Interestingly, we found that cocaine-treated rats showed enhanced, rather than diminished, sensitivity to this action-outcome contingency degradation manipulation. Given their mutual dependence on striatal dopamine signaling, we suggest that cocaine's effects on habit formation and contingency learning may stem from a common adaptation in this neurochemical system.

SELECTION OF CITATIONS
SEARCH DETAIL
...