Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22256-22264, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651607

ABSTRACT

In this work, the first dimerized nonfused electron acceptor (NFEA), based on thieno[3,4-c]pyrrole-4,6-dione as the core, has been designed and synthesized. The dimerized acceptor and its single counterpart exhibit similar energy levels but different absorption spectra due to their distinct aggregation behavior. The dimerized acceptor-based organic solar cells (OSCs) demonstrate a higher power conversion efficiency of 11.05%, accompanied by enhanced thermal stability. This improvement is attributed to the enhancement of the short-circuit current density and fill factor, along with an increase in the glass transition temperature. Characterizations of exciton dynamics and film morphology reveal that a dimerized acceptor-based device possesses an enhanced exciton dissociation efficiency and a well-established charge transport pathway, explaining its improved photovoltaic performance. All these results indicate that the dimerized NFEA as a promising candidate can achieve efficiency-stability-cost balance in OSCs.

2.
Sci Total Environ ; 912: 169275, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38086482

ABSTRACT

The increase in alien plant invasions poses a major threat to global biodiversity and ecosystem stability. However, the presence of microplastics (MPs) as an environmental stressor could impact the interactions between invasive and native species in an invasive plant community. Nevertheless, the community alterations and underlying mechanisms resulting from these interactions remain unclear. Herein, we systematically investigated the impacts of polyethylene (PE) and polypropylene (PP) on invasive plant communities invaded by Amaranthus palmeri through soil seed bank. The results illustrated that MPs markedly declined community height and biomass, and altered community structure, low-dose MPs could prominently increase community invasion resistance, but reduced community stability. The niche width and niche overlap of A. palmeri and S. viridis declined when exposed to high-dose MPs, but MPs elicited a significant rise in the niche width of S. salsa. PP had the potential to reduce the diversity of invasive plant community. Structural equation model revealed that PP addition could change soil total phosphorus content, thereby leading to a reduction of the community stability. Our study helps to fill the knowledge gap regarding the effects of MPs on invasive plant communities and provide new perspectives for invasive plant management.


Subject(s)
Amaranthus , Microplastics , Plastics , Ecosystem , Plants , Soil/chemistry , Polypropylenes
3.
ACS Appl Mater Interfaces ; 15(37): 44054-44061, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37694683

ABSTRACT

The invention of near-infrared pedant-based double-cable conjugated polymers has demonstrated remarkable efficacy in single-component organic solar cells (SCOSCs). This work focuses on the innovative double-cable conjugated polymers aimed at attaining good absorption and suitable energy levels. Specifically, in the aromatic side units, the electron-donating (D) part is designed using a thieno[3,4-c]pyrrole-4,6-dione (TPD) as a core unit, flanked by two cyclopentadithiophene groups on either side. The electron-deficient (A) terminal groups consist of 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene) malononitrile (NC), which can be further modified through fluorination to modulate the physical properties and packing modes of the acceptor material. The resulting double-cable conjugated polymers exhibit broad absorption spectra spanning 500-850 nm and possess lowered Frontier energy levels when incorporating fluorine elements, providing decreased voltage losses in SCOSCs. Therefore, SCOSCs fabricated using these polymers have demonstrated power conversion efficiencies ranging from 7.6 to 10.2%, in which fluorine-containing double-cable conjugated polymers showed higher PCEs due to more favorable crystalline packing, enhanced exciton dissociation probability, and charge-transporting ability.

4.
Adv Mater ; 35(18): e2300629, 2023 May.
Article in English | MEDLINE | ID: mdl-36814317

ABSTRACT

Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.

5.
Angew Chem Int Ed Engl ; 61(35): e202209316, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35785422

ABSTRACT

Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850 nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.

6.
Sci Total Environ ; 845: 157319, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35839892

ABSTRACT

Understanding the spatial distribution pattern change and driving factors behind ecosystem health is essential to ecosystem management and restoration. However, in the research of regional ecosystem health, there is little research on ecosystem health in coastal regions, and there is little exploration of its temporal and spatial pattern change and its driving factors. In this study, we use the Vigor-Organization-Resilience-Services (VORS) model and marine ecosystem health index to diagnose the ecosystem health of the whole coastal area of China over the last 20 years, and find the main contributing factors affecting ecosystem health with the help of geographic detectors and geographic weighted regression analysis. Our results show that: (1) the ecosystem health level in the south of the coastal region is higher than that in the north, mainly with 30° north latitude as the main dividing line. (2) The regions with high change rate are mainly concentrated in Bohai Bay, the Yangtze River Estuary, Hangzhou Bay and the Pearl River Estuary, and the change is mainly negative. (3) Both natural and human factors have an impact on ecosystem health, and the influencing factors are different on different scales. The interaction between different factors is greater than the impact of a single factor on ecosystem health. The study puts forward a new evaluation framework for the study of ecosystem health in coastal areas, which can be applied to other coastal areas with similar conditions, and can help the sustainable and healthy development of coastal areas.


Subject(s)
Ecosystem , Rivers , China , Conservation of Natural Resources , Estuaries , Factor Analysis, Statistical , Humans
7.
ACS Appl Mater Interfaces ; 14(5): 7093-7101, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35099921

ABSTRACT

Organic solar cells (OSCs) as the promising green energy technology have drawn much attention in the last two decades. In comparison to polymer solar cells, small-molecule organic solar cells (SMOSCs) have the advantages of precise chemical structure and molecular weight, purification feasibility, batch reproducibility, etc. Despite of the recent advances in molecular design, the efficiencies of SMOSCs are still lagging behind those of polymer-based OSCs. In this work, a new small-molecule donor (SMD) with a fused-ring-connected bridge denoted F-MD has been designed and synthesized. When F-MD was applied into SMOSCs, the F-MD:N3 blends exhibited a power conversion efficiency (PCE) of over 13%, which is much higher than that of the linear π-bridged molecule L-MD based devices (8.12%). Further studies revealed that the fused-ring design promoted the planarity of the molecular conformation and facilitated charge transport in OSCs. More importantly, this strategy also lowered the crystallinity and self-aggregation of the films, and hence optimized the microstructure and phase separation in the corresponding blends. Thereby, the F-MD-based blends have been evidenced to have better exciton dissociation and reduced charge recombination in comparison with the L-MD counterparts, explaining the enhanced PCEs. Our work demonstrates that the fused-ring π-bridge strategy in small-molecule-donor design is an effective pathway to promote the efficiency of SMOSCs as well as enhance the diversity of SMD materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...