Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5074, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033265

ABSTRACT

Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct Aß low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch.


Subject(s)
Nerve Net/physiopathology , Pruritus/physiopathology , Touch/physiology , Animals , Behavior, Animal , Injections, Spinal , Light , Membrane Potentials , Mice, Inbred C57BL , Neurons/metabolism , Protein Precursors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Bombesin/metabolism , Skin/pathology , Spinal Cord/physiopathology , Synapses/metabolism , Tachykinins/metabolism
2.
JCI Insight ; 5(20)2020 10 15.
Article in English | MEDLINE | ID: mdl-32960817

ABSTRACT

Recently programmed death-ligand 1 (PD-L1) receptor PD-1 was found in dorsal root ganglion (DRG) neurons, and PD-L1 activates PD-1 to inhibit inflammatory and neuropathic pain by modulating neuronal excitability. However, the downstream signaling of PD-1 in sensory neurons remains unclear. Here, we show that PD-L1 activated Src homology 2 domain-containing tyrosine phosphatase-1 (SHP-1) to downregulate transient receptor potential vanilloid 1 (TRPV1) in DRG neurons and inhibit bone cancer pain in mice. Local injection of PD-L1 produced analgesia. PD-1 in DRG neurons colocalized with TRPV1 and SHP-1. PD-L1 induced the phosphorylation of SHP-1 in DRG TRPV1 neurons and inhibited TRPV1 currents. Loss of TRPV1 in mice abolished bone cancer-induced thermal hyperalgesia and PD-L1 analgesia. Conditioned deletion of SHP-1 in NaV1.8+ neurons aggravated bone cancer pain and diminished the inhibition of PD-L1 on TRPV1 currents and pain. Together, our findings suggest that PD-L1/PD-1 signaling suppresses bone cancer pain via inhibition of TRPV1 activity. Our results also suggest that SHP-1 in sensory neurons is an endogenous pain inhibitor and delays the development of bone cancer pain via suppressing TRPV1 function.


Subject(s)
B7-H1 Antigen/genetics , Cancer Pain/genetics , Neuralgia/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , TRPV Cation Channels/genetics , Analgesia/methods , Animals , Bone Neoplasms/complications , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cancer Pain/complications , Cancer Pain/pathology , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Inflammation/complications , Inflammation/genetics , Inflammation/pathology , Male , Mice , NAV1.8 Voltage-Gated Sodium Channel/genetics , Neuralgia/complications , Neuralgia/pathology , Programmed Cell Death 1 Receptor/genetics , Sensory Receptor Cells/pathology
3.
Neurosci Bull ; 32(5): 445-54, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27631681

ABSTRACT

Given that lysophosphatidic acid (LPA) and the tetrodotoxin-resistant sodium channel Nav1.8 are both involved in bone cancer pain, the present study was designed to investigate whether crosstalk between the LPA receptor LPA1 (also known as EDG2) and Nav1.8 in the dorsal root ganglion (DRG) contributes to the induction of bone cancer pain. We showed that the EDG2 antagonist Ki16198 blocked the mechanical allodynia induced by intrathecal LPA in naïve rats and attenuated mechanical allodynia in a rat model of bone cancer. EDG2 and Nav1.8 expression in L4-6 DRGs was upregulated following intrathecal or hindpaw injection of LPA. EDG2 and Nav1.8 expression in ipsilateral L4-6 DRGs increased with the development of bone cancer. Furthermore, we showed that EDG2 co-localized with Nav1.8 and LPA remarkably enhanced Nav1.8 currents in DRG neurons, and this was blocked by either a protein kinase C (PKC) inhibitor or a PKCε inhibitor. Overall, we demonstrated the modulation of Nav1.8 by LPA in DRG neurons, and that this probably underlies the peripheral mechanism by which bone cancer pain is induced.


Subject(s)
Bone Neoplasms/complications , Cancer Pain/etiology , Cancer Pain/metabolism , Carcinoma/complications , Gene Expression Regulation, Neoplastic/drug effects , Lysophospholipids/toxicity , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Animals , Biophysics , Cancer Pain/pathology , Disease Models, Animal , Electric Stimulation , Enzyme Inhibitors/pharmacology , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Isoxazoles/pharmacology , Membrane Potentials/drug effects , Neurons/drug effects , Pain Measurement , Patch-Clamp Techniques , Propionates/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Lysophosphatidic Acid/metabolism
4.
Mol Brain ; 8: 15, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25761941

ABSTRACT

BACKGROUND: Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons. RESULTS: Whole-cell patch-clamp recordings demonstrated that DEX concentration-dependently suppressed TTX-R Nav1.8 currents in small-diameter lumbar DRG neurons. DEX also shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction and increased the threshold of action potential and decrease electrical and chemical stimuli-evoked firings in small-diameter DRG neurons. The α2-AR antagonist yohimbine or α2A-AR antagonist BRL44408 but not α2B-AR antagonist imiloxan blocked the inhibition of Nav1.8 currents by DEX. Immunohistochemistry results showed that Nav1.8 was predominantly expressed in peripherin-positive small-diameter DRG neurons, and some of them were α2A-AR-positive ones. Our electrophysiological recordings also demonstrated that DEX-induced inhibition of Nav1.8 currents was prevented by intracellular application of G-protein inhibitor GDPß-s or Gi/o proteins inhibitor pertussis toxin (PTX), and bath application of adenylate cyclase (AC) activator forskolin or membrane-permeable cAMP analogue 8-Bromo-cAMP (8-Br-cAMP). PKA inhibitor Rp-cAMP could mimic DEX-induced inhibition of Nav1.8 currents. CONCLUSIONS: We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.


Subject(s)
Dexmedetomidine/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Ganglia, Spinal/metabolism , Ion Channel Gating/drug effects , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Tetrodotoxin/pharmacology , Action Potentials , Animals , Ganglia, Spinal/drug effects , Male , Neurons/drug effects , Rats, Wistar , Receptors, Adrenergic, alpha-2/metabolism , Signal Transduction/drug effects
5.
J Neurosci ; 33(49): 19099-111, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24305807

ABSTRACT

Pain is the most common symptom of bone cancer. TGF-ß, a major bone-derived growth factor, is largely released by osteoclast bone resorption during the progression of bone cancer and contributes to proliferation, angiogenesis, immunosuppression, invasion, and metastasis. Here, we further show that TGF-ß1 is critical for bone cancer-induced pain sensitization. We found that, after the progression of bone cancer, TGF-ß1 was highly expressed in tumor-bearing bone, and the expression of its receptors, TGFßRI and TGFßRII, was significantly increased in the DRG in a rat model of bone cancer pain that is based on intratibia inoculation of Walker 256 mammary gland carcinoma cells. The blockade of TGF-ß receptors by the TGFßRI antagonist SD-208 robustly suppressed bone cancer-induced thermal hyperalgesia on post-tumor day 14 (PTD 14). Peripheral injection of TGF-ß1 directly induced thermal hyperalgesia in intact rats and wide-type mice, but not in Trpv1(-/-) mice. Whole-cell patch-clamp recordings from DRG neurons showed that transient receptor potential vanilloid (TRPV1) sensitivity was significantly enhanced on PTD 14. Extracellular application of TGF-ß1 significantly potentiated TRPV1 currents and increased [Ca(2+)]i in DRG neurons. Pharmacological studies revealed that the TGF-ß1 sensitization of TRPV1 and the induction of thermal hyperalgesia required the TGF-ßR-mediated Smad-independent PKCε and TGF-ß activating kinase 1-p38 pathways. These findings suggest that TGF-ß1 signaling contributes to bone cancer pain via the upregulation and sensitization of TRPV1 in primary sensory neurons and that therapeutic targeting of TGF-ß1 may ameliorate the bone cancer pain in advanced cancer.


Subject(s)
Bone Neoplasms/complications , Hyperalgesia/physiopathology , Peripheral Nervous System/physiopathology , Signal Transduction/physiology , Transforming Growth Factor beta1/physiology , Animals , Behavior, Animal/physiology , Blotting, Western , Carcinoma 256, Walker/pathology , Electrophysiological Phenomena , Female , Hyperalgesia/etiology , Immunohistochemistry , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/physiology , Mice , Mice, Knockout , Patch-Clamp Techniques , Protein Kinase C/physiology , Rats , Rats, Wistar , Smad Proteins/genetics , Smad Proteins/physiology , TRPV Cation Channels/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...