Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2922, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575605

ABSTRACT

Aluminum current collectors are widely used in nonaqueous batteries owing to their cost-effectiveness, lightweightness, and ease of fabrication. However, they are excluded from aqueous batteries due to their severe corrosion in aqueous solutions. Here, we propose hydrolyzation-type anodic additives to form a robust passivation layer to suppress corrosion. These additives dramatically lower the corrosion current density of aluminum by nearly three orders of magnitude to ~10-6 A cm-2. In addition, realizing that electrochemical corrosion accompanies anode prelithiation, we propose a prototype of self-prolonging aqueous Li-ion batteries (Al ||LiMn2O4 ||TiO2), whose capacity retention rises from 49.5% to 70.1% after 200 cycles. A sacrificial aluminum electrode where electrochemical corrosion is utilized is introduced as an electron supplement to prolong the cycling life of aqueous batteries. Our work addresses the short-life issue of aqueous batteries resulting from the corrosion of the current collector and lithium loss from side reactions.

2.
Blood Sci ; 5(3): 180-186, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37546712

ABSTRACT

Children with severe aplastic anemia (SAA) face heterogeneous prognoses after immunosuppressive therapy (IST). There are few models that can predict the long-term outcomes of IST for these patients. The objective of this paper is to develop a more effective prediction model for SAA prognosis based on clinical electronic medical records from 203 children with newly diagnosed SAA. In the early stage, a novel model for long-term outcomes of SAA patients with IST was developed using machine-learning techniques. Among the indicators related to long-term efficacy, white blood cell count, lymphocyte count, absolute reticulocyte count, lymphocyte ratio in bone-marrow smears, C-reactive protein, and the level of IL-6, IL-8 and vitamin B12 in the early stage are strongly correlated with long-term efficacy (P < .05). Taken together, we analyzed the long-term outcomes of rabbit anti-thymocyte globulin and cyclosporine therapy for children with SAA through machine-learning techniques, which may shorten the observation period of therapeutic effects and reduce treatment costs and time.

3.
ACS Appl Mater Interfaces ; 15(28): 33712-33720, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37403581

ABSTRACT

CsPbBr3 perovskite nanocrystals have emerged as promising candidates for photocatalysis. However, their conversion efficiency is hampered by material instability, and the accumulation of deactivated perovskites produced after photocatalytic reactions raises significant environmental concerns. To address this issue, we developed a mechanochemical grinding approach assisted by oleylamine as an additive to restore the optical properties and photocatalytic activity of deactivated CsPbBr3, which was due to aggregation in the photocatalytic CO2 reduction reaction. Upon regeneration, the CsPbBr3 nanocrystals exhibited an average length of 34.21 nm and an average width of 20.86 nm, demonstrating optical properties comparable to those of the pristine CsPbBr3 nanocrystals. Moreover, they achieved a conversion efficiency of 88.7% compared with pristine CsPbBr3 nanocrystals in the photocatalytic CO2 reduction reaction. This method effectively enhanced the utilization of CsPbBr3, offering a novel approach for the recycling and recovery of perovskite materials and thereby minimizing material waste and environmental pollution.

4.
Adv Mater ; 34(47): e2207040, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36121604

ABSTRACT

High-concentration water-in-salt (WIS) electrolytes expand the stable electrochemical window of aqueous electrolytes, leading to the advent of high-voltage (above 2 V) aqueous Li-ion batteries (ALIBs). However, the high lithium salt concentration electrolytes of ALIBs result in their high cost and deteriorate kinetic performance. Therefore, it is challenging for ALIBs to explore aqueous electrolytes with appropriate concentration to balance the electrochemical window and kinetic performance as well as the cost. In contrast to maintaining high concentrations of aqueous electrolytes (>20 m), a small number of hydrophobic cations are introduced to a much lower electrolyte concentration (13.8 m), and it is found that, compared with WIS electrolytes, ALIBs with these concentration-lowered electrolytes possess a compatible stable electrochemical window (3.23 V) and achieve better kinetic performance. These findings originate from the added cations, which form an electric-field-reinforced hydrophobic cationic sieve (HCS) that blocks water away from the anode and suppresses the hydrogen evolution reaction. Meanwhile, the lower electrolyte concentration provides significant benefits to ALIBs, including lower cost, better rate capability (lower viscosity of 18 cP and higher ionic conductivity of 22 mS cm-1 at 25 °C), and improved low-temperature performance (liquidus temperature of -10.18 °C).

5.
Anal Chem ; 92(8): 5701-5707, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32212716

ABSTRACT

FDR control has been a huge challenge for large-scale metabolome annotation. Although recent research indicated that the target-decoy strategy could be implemented to estimate FDR, it is hard to perform FDR control due to the difficulty of getting a reliable decoy database because of the complex fragmentation mechanism of metabolites and ubiquitous isomers. To tackle this problem, we developed a decoy generation method, which generates forged spectra from the reference target database by preserving the original reference signals to simulate the presence of isomers of metabolites. Benchmarks on GNPS data sets in Passatutto showed that the decoy database generated by our method is closer to the actual FDR than other methods, especially in the low FDR range (0-0.05). Large-scale metabolite annotation on 35 data sets showed that strict FDR reduced the number of annotated metabolites but increased the spectral efficiency, indicating the necessity of quality control. We recommended that the FDR threshold should be set to 0.01 in large-scale metabolite annotation. We implemented decoy generation, database search, and FDR control into a search engine called XY-Meta. It facilitates large-scale metabolome annotation applications.


Subject(s)
Algorithms , Metabolomics , Peptides/metabolism , Proteins/metabolism , Search Engine , Databases, Protein , Peptides/analysis , Proteins/analysis
6.
ACS Appl Mater Interfaces ; 11(44): 41356-41362, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31603299

ABSTRACT

Prussian blue analogues (PBAs) are considered to be ideal multivalent cation host materials due to their unique open-framework structure. In aqueous solution, however, the PBAs' cathodes have a low reversible capacity limited by the single electrochemical group Fe(CN)63- and high crystal water content. They also suffer from fast cycle fading, resulting from significant oxygen/hydrogen evolution and cathode dissolution. In this work, a high-capacity PBA-type FeFe(CN)6 cathode with double transition metal redox sites is successfully demonstrated in 5 m Al(CF3SO3)3 Water-in-Salt electrolyte (Al-WISE). Due to Al-WISE having a wide electrochemical window (2.65 V) and low dissolution of the cathode, our PBA cathode exhibits a high discharge capacity of 116 mAh/g and the superior cycle stability >100 cycles with capacity fading of 0.39% per cycle.

7.
BMC Genomics ; 17 Suppl 5: 499, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27586129

ABSTRACT

BACKGROUND: De novo genome assembly using NGS data remains a computation-intensive task especially for large genomes. In practice, efficiency is often a primary concern and favors using a more efficient assembler like SOAPdenovo2. Yet SOAPdenovo2, based on de Bruijn graph, fails to take full advantage of longer NGS reads (say, 150 bp to 250 bp from Illumina HiSeq and MiSeq). Assemblers that are based on string graphs (e.g., SGA), though less popular and also very slow, are more favorable for longer reads. METHODS: This paper shows a new de novo assembler called BASE. It enhances the classic seed-extension approach by indexing the reads efficiently to generate adaptive seeds that have high probability to appear uniquely in the genome. Such seeds form the basis for BASE to build extension trees and then to use reverse validation to remove the branches based on read coverage and paired-end information, resulting in high-quality consensus sequences of reads sharing the seeds. Such consensus sequences are then extended to contigs. RESULTS: Experiments on two bacteria and four human datasets shows the advantage of BASE in both contig quality and speed in dealing with longer reads. In the experiment on bacteria, two datasets with read length of 100 bp and 250 bp were used.. Especially for the 250 bp dataset, BASE gives much better quality than SOAPdenovo2 and SGA and is simlilar to SPAdes. Regarding speed, BASE is consistently a few times faster than SPAdes and SGA, but still slower than SOAPdenovo2. BASE and Soapdenov2 are further compared using human datasets with read length 100 bp, 150 bp and 250 bp. BASE shows a higher N50 for all datasets, while the improvement becomes more significant when read length reaches 250 bp. Besides, BASE is more-meory efficent than SOAPdenovo2 when sequencing data with error rate. CONCLUSIONS: BASE is a practically efficient tool for constructing contig, with significant improvement in quality for long NGS reads. It is relatively easy to extend BASE to include scaffolding.


Subject(s)
High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA/methods , Algorithms , Humans , Software , Staphylococcus aureus/genetics , Vibrio parahaemolyticus/genetics
9.
Nat Biotechnol ; 33(6): 617-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26006006

ABSTRACT

The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.


Subject(s)
Genome, Human , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Precision Medicine , Asian People/genetics , Base Sequence , Chromosome Mapping , Diploidy , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Gigascience ; 3(1): 27, 2014.
Article in English | MEDLINE | ID: mdl-25671092

ABSTRACT

BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

11.
Gigascience ; 2(1): 10, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23870653

ABSTRACT

BACKGROUND: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. RESULTS: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. CONCLUSIONS: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

12.
Nat Commun ; 4: 1595, 2013.
Article in English | MEDLINE | ID: mdl-23481403

ABSTRACT

The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Oryza/genetics , Sequence Analysis, DNA , Base Sequence , Chromatin/genetics , Chromosomes, Plant/genetics , Conserved Sequence , Gene Duplication/genetics , Gene Rearrangement/genetics , Genetic Loci/genetics , Genome Size/genetics , Molecular Sequence Data , Multigene Family/genetics , Mutagenesis, Insertional/genetics , Repetitive Sequences, Nucleic Acid/genetics , Retroelements/genetics , Segmental Duplications, Genomic/genetics , Terminal Repeat Sequences/genetics
13.
PLoS One ; 7(10): e47656, 2012.
Article in English | MEDLINE | ID: mdl-23082188

ABSTRACT

MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.


Subject(s)
Computational Biology/methods , Genes/genetics , Metagenomics/methods , Software , Computer Simulation , Databases, Genetic , Gastrointestinal Tract/microbiology , Humans , Metagenome , Reference Standards , Sequence Analysis, DNA , Statistics as Topic
14.
Bioinformatics ; 28(22): 2870-4, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23044551

ABSTRACT

MOTIVATION: The boost of next-generation sequencing technologies provides us with an unprecedented opportunity for elucidating genetic mysteries, yet the short-read length hinders us from better assembling the genome from scratch. New protocols now exist that can generate overlapping pair-end reads. By joining the 3' ends of each read pair, one is able to construct longer reads for assembling. However, effectively joining two overlapped pair-end reads remains a challenging task. RESULT: In this article, we present an efficient tool called Connecting Overlapped Pair-End (COPE) reads, to connect overlapping pair-end reads using k-mer frequencies. We evaluated our tool on 30× simulated pair-end reads from Arabidopsis thaliana with 1% base error. COPE connected over 99% of reads with 98.8% accuracy, which is, respectively, 10 and 2% higher than the recently published tool FLASH. When COPE is applied to real reads for genome assembly, the resulting contigs are found to have fewer errors and give a 14-fold improvement in the N50 measurement when compared with the contigs produced using unconnected reads. AVAILABILITY AND IMPLEMENTATION: COPE is implemented in C++ and is freely available as open-source code at ftp://ftp.genomics.org.cn/pub/cope. CONTACT: twlam@cs.hku.hk or luoruibang@genomics.org.cn


Subject(s)
Algorithms , Arabidopsis/genetics , Chromosome Mapping , Genomics/methods , Sequence Analysis, DNA/methods , Contig Mapping
15.
Nature ; 490(7418): 49-54, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22992520

ABSTRACT

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Subject(s)
Adaptation, Physiological/genetics , Animal Shells/growth & development , Crassostrea/genetics , Genome/genetics , Stress, Physiological/physiology , Animal Shells/chemistry , Animals , Apoptosis Regulatory Proteins/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Female , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Genomics , HSP70 Heat-Shock Proteins/genetics , Humans , Larva/genetics , Larva/growth & development , Mass Spectrometry , Molecular Sequence Annotation , Molecular Sequence Data , Polymorphism, Genetic/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Stress, Physiological/genetics , Transcriptome/genetics
16.
Proc Natl Acad Sci U S A ; 109(30): 12219-24, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22778405

ABSTRACT

Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ~134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments.


Subject(s)
Adaptation, Biological/genetics , Brassicaceae/genetics , Brassicaceae/physiology , Genome, Plant/genetics , Salt-Tolerant Plants/genetics , Abscisic Acid/metabolism , Base Sequence , Cation Transport Proteins/genetics , Computational Biology , DNA Primers/genetics , Gene Duplication/genetics , Gene Library , Genomics , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Phylogeny , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Species Specificity
17.
Bioinformatics ; 28(11): 1533-5, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22508794

ABSTRACT

MOTIVATION: The next-generation high-throughput sequencing technologies, especially from Illumina, have been widely used in re-sequencing and de novo assembly studies. However, there is no existing software that can simulate Illumina reads with real error and quality distributions and coverage bias yet, which is very useful in relevant software development and study designing of sequencing projects. RESULTS: We provide a software package, pIRS (profile-based Illumina pair-end reads simulator), which simulates Illumina reads with empirical Base-Calling and GC%-depth profiles trained from real re-sequencing data. The error and quality distributions as well as coverage bias patterns of simulated reads using pIRS fit the properties of real sequencing data better than existing simulators. In addition, pIRS also comes with a tool to simulate the heterozygous diploid genomes. AVAILABILITY: pIRS is written in C++ and Perl, and is freely available at ftp://ftp.genomics.org.cn/pub/pIRS/.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Computer Simulation , Human Genome Project , Humans , Markov Chains
18.
Gigascience ; 1(1): 18, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23587118

ABSTRACT

BACKGROUND: There is a rapidly increasing amount of de novo genome assembly using next-generation sequencing (NGS) short reads; however, several big challenges remain to be overcome in order for this to be efficient and accurate. SOAPdenovo has been successfully applied to assemble many published genomes, but it still needs improvement in continuity, accuracy and coverage, especially in repeat regions. FINDINGS: To overcome these challenges, we have developed its successor, SOAPdenovo2, which has the advantage of a new algorithm design that reduces memory consumption in graph construction, resolves more repeat regions in contig assembly, increases coverage and length in scaffold construction, improves gap closing, and optimizes for large genome. CONCLUSIONS: Benchmark using the Assemblathon1 and GAGE datasets showed that SOAPdenovo2 greatly surpasses its predecessor SOAPdenovo and is competitive to other assemblers on both assembly length and accuracy. We also provide an updated assembly version of the 2008 Asian (YH) genome using SOAPdenovo2. Here, the contig and scaffold N50 of the YH genome were ~20.9 kbp and ~22 Mbp, respectively, which is 3-fold and 50-fold longer than the first published version. The genome coverage increased from 81.16% to 93.91%, and memory consumption was ~2/3 lower during the point of largest memory consumption.

19.
Brief Funct Genomics ; 11(1): 25-37, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22184334

ABSTRACT

Since the completion of the cucumber and panda genome projects using Illumina sequencing in 2009, the global scientific community has had to pay much more attention to this new cost-effective approach to generate the draft sequence of large genomes. To allow new users to more easily understand the assembly algorithms and the optimum software packages for their projects, we make a detailed comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph, from how they match the Lander-Waterman model, to the required sequencing depth and reads length. We also discuss the computational efficiency of each class of algorithm, the influence of repeats and heterozygosity and points of note in the subsequent scaffold linkage and gap closure steps. We hope this review can help further promote the application of second-generation de novo sequencing, as well as aid the future development of assembly algorithms.


Subject(s)
Algorithms , Sequence Analysis, DNA/methods , Animals , Databases, Nucleic Acid , Models, Genetic , Statistics as Topic
20.
Nat Genet ; 43(10): 1035-9, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21873998

ABSTRACT

We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.


Subject(s)
Brassica rapa/genetics , Genome, Plant , Polyploidy , Arabidopsis/genetics , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Plant/genetics , Contig Mapping , Evolution, Molecular , Gene Duplication , Genes, Plant , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...