Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Orthop Translat ; 48: 107-122, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39189010

ABSTRACT

Background: Romosozumab is a novel monoclonal antibody that binds to sclerostin, and has dual effects of increasing bone formation and decreasing bone resorption, giving it a unique mechanism of action. The objective of this study was to perform a systematic review and meta-analysis based on existing worldwide data on treatment effects and safety of romosozumab in randomized controlled trials. Methods: A systematic search was carried out on four databases including PubMed, Embase, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL). The keywords used for search was "(romosozumab) AND (osteoporosis OR safety)". Randomized controlled trial or post-hoc studies of the included randomized controlled trial which studied the effects and safety of romosozumab were included. The quality of selected studies was assessed with the Cochrane collaboration tool and the PEDro scale. Results: 20 studies were included for qualitative analysis. 14 studies were included for meta-analysis. In total, there were 13,507 (n = 13,507) participants with 637 men and 12,870 women from original cohorts. The overall mean difference was in favor of romosozumab treatment for lumbar spine (10.04 (95 % confidence interval (CI) = 7.51-12.57; p < 0.00001)), total hip (4.04 (95 % CI = 3.10-4.99; p < 0.00001)) and femoral neck bone mineral density (3.77 (95 % CI = 2.90-4.64; p < 0.00001)) at 12 months. There was significantly less likelihood of new vertebral fractures with romosozumab compared to control (odds ratio (OR) 0.42 (95 % CI = 0.20-0.89); p = 0.02) at 12 months of treatment. There was significantly less likelihood of new vertebral fracture at 24 months with 12 months of romosozumab followed by sequential treatment with anti-resorptive compared to control with only anti-resorptive agent use (OR 0.36 (95 % CI = 0.18-0.71); p = 0.003). There was no significant difference in serious adverse events and fatal adverse events with use of romosozumab compared with control in our meta-analyses. There were no significant differences in serious cardiovascular events in Asian population of romosozumab with control group with 12 months of romosozumab treatment followed by 24 months of anti-resorptive agent with OR 1.09 (95 % CI = 0.40-2.96; P = 0.86). There was no significant difference between romosozumab group and control group for the median time to radiographic healing. Our qualitative analysis on Quantitative Computed Tomography (QCT), Finite element analysis (FEA) and bone biopsy analyses demonstrated that romosozumab improved parameters and measures in these domains as well. Conclusion: In conclusion, our study showed that romosozumab was an effective agent to treat osteoporosis with high quality evidence. There were no significant differences in the adverse events, serious adverse events, fatal adverse events identified. Further subgroup analysis of cardiovascular events and cardiovascular death in the total population showed no differences either. The translational potential of this article: Given the results, romosozumab is an effective agent to treat patients with very-high risk of osteoporotic fractures.

2.
Sensors (Basel) ; 24(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065987

ABSTRACT

Protection suits are vital for firefighters' safety. Traditional protection suits physically protect firemen from burns, but cannot locate the position of bodily injuries caused by impact debris. Herein, we present a wearable impact debris positioning system for firefighter protection suits based on an accelerometer array. Wearable piezoelectric accelerometers are distributed regularly on the suit to detect the vibration on different body parts, which is conducive to determining the position of injured body parts. In addition, the injured parts can be displayed on a dummy body model on the upper computer with a higher localization accuracy of 4 cm. The positioning alarm system has a rapid response time of 0.11 ms, attributed to the smart signal processing method. This work provides a reliable and smart method for locating and assessing the position of bodily injuries caused by impact debris, which is significant because it enables fire commanders to rescue injured firefighters in time.


Subject(s)
Accelerometry , Firefighters , Accelerometry/instrumentation , Humans , Protective Clothing , Wearable Electronic Devices , Vibration
3.
J Orthop Translat ; 47: 63-73, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007034

ABSTRACT

Background: The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/ß-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/ß-catenin signaling pathways in muscle-bone crosstalk. Methods: We conducted a literature search on the Web of Science, PubMed, EBSCO and Embase with keywords "Wnt*", "bone*" and "muscle*". A systematic review was completed according to the guideline of preferred reporting items of systematic reviews and meta-analyses (PRISMA). Data synthesis included species (human, animal or cell type used), treatments involved, outcome measures and key findings with respect to Wnts. Results: Seventeen papers were published from 2007 to 2021 and were extracted from a total of 1529 search results in the databases of Web of Science (468 papers), PubMed (457 papers), EBSCO (371) and Embase (233). 12 Wnt family members were investigated in the papers, including Wnt1, Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt8a, Wnt8b, Wnt9a, Wnt10a, Wnt10b and Wnt16. Many studies showed that muscles were able to increase or decrease osteogenesis of bone, while bone increased myogenesis of muscle through Wnt/ß-catenin signaling pathways. Wnt3a, Wnt4 and Wnt10b were shown to play important roles in the crosstalk between muscle and bone. Conclusions: Wnt3a, Wnt4 and Wnt10b are found to play important mediatory roles in muscle-bone crosstalk. The role of Wnt4 was mostly found to regulate muscle from the bone side. Whilst the role of Wnt10b during muscle ageing was proposed, current evidence is insufficient to clarify the specific role of Wnt/ß-catenin signaling in the interplay between sarcopenia and osteoporosis. More future studies are required to investigate the exact regulatory roles of Wnts in muscle-bone crosstalk in musculoskeletal disease models such as sarcopenia and osteoporosis. Translational potential of this article: The systematic review provides an extensive overview to reveal the roles of Wnt/ß-catenin signaling pathways in muscle-bone crosstalk. These results provide novel research directions to further understand the underlying mechanism of sarcopenia, osteoporosis, and their crosstalk, finally helping the future development of new therapeutic interventions.

4.
ACS Appl Mater Interfaces ; 16(26): 33404-33415, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904481

ABSTRACT

Triboelectric nanogenerators (TENGs) have garnered substantial attention in breeze wind energy harvesting. However, how to improve the output performance and reduce friction and wear remain challenging. To this end, a blade-type triboelectric-electromagnetic hybrid generator (BT-TEHG) with a double frequency up-conversion (DFUC) mechanism is proposed. The DFUC mechanism enables the TENG to output a high-frequency response that is 15.9 to 300 times higher than the excitation frequency of 10 to 200 rpm. Coupled with the collisions between tribomaterials, a higher surface charge density and better generating performance are achieved. The magnetization direction and dimensional parameters of the BT-TEHG were optimized, and its generating characteristics under varying rotational speeds and electrical boundary conditions were studied. At wind speeds of 2.2 and 10 m/s, the BT-TEHG can generate, respectively, power of 1.30 and 19.01 mW. Further experimentation demonstrates its capacity to charge capacitors, light up light emitting diodes (LEDs), and power wireless temperature and humidity sensors. The demonstrations show that the BT-TEHG has great potential applications in self-powered wireless sensor networks (WSNs) for environmental monitoring of intelligent agriculture.

5.
Odontology ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762821

ABSTRACT

Treatment of root canal infections becomes more challenging due to the extremely high tolerance of Enterococcus faecalis (E. faecalis) to calcium hydroxide (Ca(OH)2). Ginsenoside is a Chinese herbal extract that has been proven to have antimicrobial properties and synergistic activities. And this study evaluated the antibacterial activity of ginsenoside Rh2 in combination with Ca(OH)2 against E. faecalis and its preliminary mechanism of action. Broth microdilution method, checkerboard dilution method, time-inhibition curve, drug resistance assays, scanning electron microscopy, and biofilm inhibition and removal assays indicated that Rh2 in combination with Ca(OH)2 exhibited potent antibacterial activity against E. faecalis. Rh2 exerted significant in vitro antibacterial activity against E. faecalis, with a minimum inhibitory concentration (MIC) of 3.125 µg/mL and minimum bactericidal concentration (MBC) of 6.25 µg/mL, and significantly enhanced the susceptibility of E. faecalis to Ca(OH)2 (FICI = 0.5). Furthermore, cell membrane permeability assays, surface hydrophobicity assays, ATPase activity assays, and intra-biofilm extracellular polysaccharides (EPS) assays revealed that Rh2 and Ca(OH)2 synergistically inhibit bacteria mainly by increasing membrane permeability. Ultimately, cytotoxicity assays showed that Rh2 exhibited only low toxicity, the half maximal inhibitory concentration (IC50) of Rh2 was 19.75 µg/mL. This study confirmed the synergistic antibacterial activities of Rh2 and Ca(OH)2 against E. faecalis. Our findings indicate that the Rh2 and Ca(OH)2 combination may be a promising alternative approach to treating root canal infections.

6.
Phytomedicine ; 129: 155604, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614042

ABSTRACT

BACKGROUND: Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE: This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS: The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS: Ginsenoside monomers regulate signaling pathways such as WNT/ß-catenin, FGF, and BMP/TGF-ß, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/ß-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION: The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.


Subject(s)
Ginsenosides , Osteoblasts , Osteogenesis , Ginsenosides/pharmacology , Humans , Osteogenesis/drug effects , Animals , Osteoblasts/drug effects , Tissue Engineering/methods , Bone and Bones/drug effects
7.
Aging Cell ; 23(7): e14156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38532712

ABSTRACT

Neuromuscular junction (NMJ) degeneration is one of pathological factors of sarcopenia. Low-magnitude high-frequency vibration (LMHFV) was reported effective in alleviating the sarcopenia progress. However, no previous study has investigated treatment effects of LMHFV targeting NMJ degeneration in sarcopenia. We first compared morphological differences of NMJ between sarcopenic and non-sarcopenic subjects, as well as young and old C57BL/6 mice. We then systematically characterized the age-related degeneration of NMJ in SAMP8 against its control strain, SAMR1 mice, from 3 to 12 months old. We also investigated effects of LMHFV in SAMP8 on the maintenance of NMJ during the onset of sarcopenia with respect to the Agrin-LRP4-MuSK-Dok7 pathway and investigated the mechanism related to ERK1/2 signaling. We observed sarcopenic/old NMJ presented increased acetylcholine receptors (AChRs) cluster fragmentation and discontinuity than non-sarcopenic/young NMJ. In SAMP8, NMJ degeneration (morphologically at 6 months and functionally at 8 months) was observed associated with the sarcopenia onset (10 months). SAMR1 showed improved NMJ morphology and function compared with SAMP8 at 10 months. Skeletal muscle performance was improved at Month 4 post-LMHFV treatment. Vibration group presented improved NMJ function at Months 2 and 6 posttreatment, accompanied with alleviated morphological degeneration at Month 4 posttreatment. LMHFV increased Dok7 expression at Month 4 posttreatment. In vitro, LMHFV could promote AChRs clustering in myotubes by increasing Dok7 expression through suppressing ERK1/2 phosphorylation. In conclusion, NMJ degeneration was observed associated with the sarcopenia onset in SAMP8. LMHFV may attenuate NMJ degeneration and sarcopenia progression by increasing Dok7 expression through suppressing ERK1/2 phosphorylation.


Subject(s)
Mice, Inbred C57BL , Neuromuscular Junction , Sarcopenia , Vibration , Sarcopenia/pathology , Sarcopenia/metabolism , Animals , Vibration/therapeutic use , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Male , Humans , Aging , Female
8.
Sensors (Basel) ; 24(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38544024

ABSTRACT

Real-time monitoring of rainwater is a critical issue in the development of autonomous vehicles and smart homes, while the corresponding sensors play a pivotal role in ensuring their sensitivity. Here, we study a self-powered intelligent water droplet monitoring sensor based on a solid-liquid triboelectric nanogenerator (SL-TENG). The sensor comprises a SL-TENG, a signal acquisition module, a central processing unit (CPU), and a wireless transmission module, facilitating the real-time monitoring of water droplet signals. It is worth noting that the SL-TENG has self-powering characteristics and can convert the kinetic energy of water droplets into electrical energy. The excellent output performance, with open-circuit voltage of 9 V and short-circuit current of 2 µA without any treatment of the SL-TENG, can provide an effective solution to the problem that traditional sensor need battery replacement. In addition, the SL-TENG can generate stable amplitude electrical signals through water droplets, exemplified by the absence of decay in a short-circuit current within 7 days. More importantly, the sensor is equipped with intelligent analytical capabilities, allowing it to assess rainfall based on variables such as amplitude and frequency. Due to its excellent stability and intelligent analysis, this sensor can be used for roof rainwater monitoring, intravenous administration monitoring, and especially in automobile automatic wipers and other fields.

9.
Eur J Radiol ; 172: 111347, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325189

ABSTRACT

OBJECTIVES: This study aimed to evaluate the performance of a deep learning radiomics (DLR) model, which integrates multimodal MRI features and clinical information, in diagnosing sacroiliitis related to axial spondyloarthritis (axSpA). MATERIAL & METHODS: A total of 485 patients diagnosed with sacroiliitis related to axSpA (n = 288) or non-sacroiliitis (n = 197) by sacroiliac joint (SIJ) MRI between May 2018 and October 2022 were retrospectively included in this study. The patients were randomly divided into training (n = 388) and testing (n = 97) cohorts. Data were collected using three MRI scanners. We applied a convolutional neural network (CNN) called 3D U-Net for automated SIJ segmentation. Additionally, three CNNs (ResNet50, ResNet101, and DenseNet121) were used to diagnose axSpA-related sacroiliitis using a single modality. The prediction results of all the CNN models across different modalities were integrated using a stacking method based on different algorithms to construct ensemble models, and the optimal ensemble model was used as DLR signature. A combined model incorporating DLR signature with clinical factors was developed using multivariable logistic regression. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS: Automated deep learning-based segmentation and manual delineation showed good correlation. ResNet50, as the optimal basic model, achieved an area under the curve (AUC) and accuracy of 0.839 and 0.804, respectively. The combined model yielded the highest performance in diagnosing axSpA-related sacroiliitis (AUC: 0.910; accuracy: 0.856) and outperformed the best ensemble model (AUC: 0.868; accuracy: 0.825) (all P < 0.05). Moreover, the DCA showed good clinical utility in the combined model. CONCLUSION: We developed a diagnostic model for axSpA-related sacroiliitis by combining the DLR signature with clinical factors, which resulted in excellent diagnostic performance.


Subject(s)
Axial Spondyloarthritis , Deep Learning , Sacroiliitis , Humans , Magnetic Resonance Imaging/methods , Radiomics , Retrospective Studies , Sacroiliac Joint/diagnostic imaging , Sacroiliitis/diagnostic imaging
10.
Crit Rev Anal Chem ; : 1-21, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366356

ABSTRACT

Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.

11.
Nanotechnology ; 35(24)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38408368

ABSTRACT

The crossing of the blood-brain barrier (BBB) for conventional anticancer drugs is still a big challenge in treating glioma. The biomimetic nanoparticle delivery system has attracted increasing attention and has a promising future for crossing the BBB. Herein, we construct a multifunctional biomimetic nanoplatform using the erythrocyte membrane (EM) with the tumor-penetrating peptide iRGD (CRGDK/RGPD/EC) as a delivery, and the inner core loaded with the chemotherapeutic drug temozolomide (TMZ). The resulting biomimetic nanoparticle has perfect biocompatibility and stealth ability, which will provide more chances to escape the reticuloendothelial system (RES) entrapment, and increase the opportunity to enter the tumor site. Moreover, the decorated iRGD has been extensively used to actively targeting and deliver therapeutic agents across the BBB into glioma tissue. We show that this biomimetic delivery of TMZ with a diameter of 22 nm efficiently slowed the growth of glioblastoma multiforme (GBM) and increased the survival rate of the 30 d from 0% to 100%.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Erythrocyte Membrane , Biomimetics , Cell Line, Tumor , Brain Neoplasms/drug therapy
12.
Talanta ; 269: 125394, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37980173

ABSTRACT

Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Humans , Saliva/chemistry , Quality of Life , Polymers , Biomarkers/analysis
13.
Plant Dis ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37682228

ABSTRACT

Hedychium coronarium is an economically significant crop that is widely cultivated for its ornamental, aromatic, and medicinal value (Abbas et al. 2021). From 2020 to 2023, a leaf blight was observed in about 85% of H. coronarium growing in a production field (approximately 500 m2) at Southwest University, Chongqing, China (29° 150'-29° 41' N, 105° 17'-105° 44' E). Symptoms included dark brown necrotic tissue with a clear yellow border. When the disease became severe, affected leaves became dry and abscised. Symptomatic pieces (2 to 5 mm2) between necrotic and healthy tissues were collected from 20 leaf samples, then were immersed in 70% ethanol for 10 s, 0.1% mercury bichloride for 3 min, rinsed in sterile water three times, and placed onto potato dextrose agar (PDA). Four Alternaria isolates were obtained by transferring hyphal tips to new plates. All isolates had identical morphological traits. Cultures on PDA were initially white mycelium on the rim with a light brown center. At around the fourth day, the colony margin changed into light gray and the central part turned sooty black. Conidiophores were branched. Conidia were dark brown, ovoid or ellipsoid in shape, 3.4 to 13.2 µm × 4.1 to 23.5 µm (n = 50) with zero to four transverse and longitudinal septa. For molecular identification, DNA was extracted using the PlantGen DNA Kit CW0553A (Cwbio, Taizhou, China) for PCR amplification of internal transcribed spacer (ITS) region, and 28S large subunit ribosomal RNA (LSU), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Alternaria major allergen (Alt a 1) and actin (ACT) genes (Choi et al. 2022; Xie et al. 2022; Zhang et al. 2021). BLASTn searches showed that ITS, LSU, GAPDH, Alt a 1 and ACT of four isolates had 100% homology with the corresponding sequences of A. alternata strains MZ578214, KP940477, MK903028, MN655781 and MF564199, respectively. Representative sequences of one strain (AH1) with accession numbers of OK639009, OK639186, OK664976, OK664977 and OK664978 for ITS, LSU, GAPDH, Alt a 1 and ACT regions were deposited in GenBank. The maximum-likelihood tree generated by MEGA 5.10 demonstrated that the pathogenic isolate AH1 obtained from H. coronarium leaf was grouped in the same clade with A. alternata strain CBS121348, which was supported by 100% bootstrap values. To fulfill Koch's postulates, conidia were collected from a 7-day-old culture, suspended in sterile distilled water, and adjusted to 1 × 106 conidia/mL. Leaves on 6-month-old H. coronarium were surface disinfected with 1% sodium hypochlorite solution for 1 min, rinsed twice in water, and then inoculated with AH1 using a sprayer, while leaves treated with sterile water served as negative controls. The experiment was conducted four times, and each repeat contained 10 plants. Pathogenicity tests were performed in the greenhouse at 25°C with a 12 h photoperiod. Partial yellow lesions were observed 3 days of post-inoculation. As the disease progressed, the tawny color gradually spread across the leaf and the tip became dark brown within 7 days. The necrosis expanded and some small leaves were completely affected within 2 weeks. The pathogen was re-isolated from the lesions and re-identified through morphological traits and sequence analysis. A. alternata have been reported to cause leaf diseases in a variety of cereal crops, vegetables, and fruits across China (Sun et al. 2021; Zheng et al. 2015), which cause significant crop loss. To our knowledge, this is the first report of A. alternata causing leaf blight of H. coronarium in the world. More surveys are needed to explore the epidemiology and management strategies for disease caused by A. alternata in Southwest China.

14.
Nutrients ; 15(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630803

ABSTRACT

This paper presents a systematic review of studies investigating the effects of fatty acid supplementation in potentially preventing and treating sarcopenia. PubMed, Embase, and Web of Science databases were searched using the keywords 'fatty acid' and 'sarcopenia'. Results: A total of 14 clinical and 11 pre-clinical (including cell and animal studies) studies were included. Of the 14 clinical studies, 12 used omega-3 polyunsaturated fatty acids (PUFAs) as supplements, 1 study used ALA and 1 study used CLA. Seven studies combined the use of fatty acid with resistant exercises. Fatty acids were found to have a positive effect in eight studies and they had no significant outcome in six studies. The seven studies that incorporated exercise found that fatty acids had a better impact on elderlies. Four animal studies used novel fatty acids including eicosapentaenoic acid, trans-fatty acid, and olive leaf extraction as interventions. Three animal and four cell experiment studies revealed the possible mechanisms of how fatty acids affect muscles by improving regenerative capacity, reducing oxidative stress, mitochondrial and peroxisomal dysfunctions, and attenuating cell death. Conclusion: Fatty acids have proven their value in improving sarcopenia in pre-clinical experiments. However, current clinical studies show controversial results for its role on muscle, and thus the mechanisms need to be studied further. In the future, more well-designed randomized controlled trials are required to assess the effectiveness of using fatty acids in humans.


Subject(s)
Muscles , Sarcopenia , Animals , Humans , Cell Death , Databases, Factual , Dietary Supplements , Eicosapentaenoic Acid , Fatty Acids/therapeutic use , Sarcopenia/drug therapy
15.
J Digit Imaging ; 36(5): 2025-2034, 2023 10.
Article in English | MEDLINE | ID: mdl-37268841

ABSTRACT

Ankylosing spondylitis (AS) is a chronic inflammatory disease that causes inflammatory low back pain and may even limit activity. The grading diagnosis of sacroiliitis on imaging plays a central role in diagnosing AS. However, the grading diagnosis of sacroiliitis on computed tomography (CT) images is viewer-dependent and may vary between radiologists and medical institutions. In this study, we aimed to develop a fully automatic method to segment sacroiliac joint (SIJ) and further grading diagnose sacroiliitis associated with AS on CT. We studied 435 CT examinations from patients with AS and control at two hospitals. No-new-UNet (nnU-Net) was used to segment the SIJ, and a 3D convolutional neural network (CNN) was used to grade sacroiliitis with a three-class method, using the grading results of three veteran musculoskeletal radiologists as the ground truth. We defined grades 0-I as class 0, grade II as class 1, and grades III-IV as class 2 according to modified New York criteria. nnU-Net segmentation of SIJ achieved Dice, Jaccard, and relative volume difference (RVD) coefficients of 0.915, 0.851, and 0.040 with the validation set, respectively, and 0.889, 0.812, and 0.098 with the test set, respectively. The areas under the curves (AUCs) of classes 0, 1, and 2 using the 3D CNN were 0.91, 0.80, and 0.96 with the validation set, respectively, and 0.94, 0.82, and 0.93 with the test set, respectively. 3D CNN was superior to the junior and senior radiologists in the grading of class 1 for the validation set and inferior to expert for the test set (P < 0.05). The fully automatic method constructed in this study based on a convolutional neural network could be used for SIJ segmentation and then accurately grading and diagnosis of sacroiliitis associated with AS on CT images, especially for class 0 and class 2. The method for class 1 was less effective but still more accurate than that of the senior radiologist.


Subject(s)
Sacroiliitis , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/diagnosis , Sacroiliitis/diagnostic imaging , Sacroiliac Joint/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods
16.
Subcell Biochem ; 103: 95-120, 2023.
Article in English | MEDLINE | ID: mdl-37120466

ABSTRACT

Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.


Subject(s)
Sarcopenia , Humans , Sarcopenia/diagnosis , Sarcopenia/therapy , Muscle Strength/physiology , Muscle, Skeletal/physiology , Aging/physiology , Exercise
17.
Front Endocrinol (Lausanne) ; 14: 1077255, 2023.
Article in English | MEDLINE | ID: mdl-36936175

ABSTRACT

Background: Elderly people with low lean and high fat mass, are diagnosed with sarcopenic obesity (SO), and often have poor clinical outcomes. This study aimed to explore the relationship between obesity and sarcopenia, and the optimal proportion of fat and muscle for old individuals. Methods: Participants aged 60 years or above were instructed to perform bioelectrical impedance analysis to obtain the muscle and fat indicators, and handgrip strength was also performed. Sarcopenia was diagnosed according to predicted appendicular skeletal muscle mass and function. Body mass index (BMI) and body fat percentage (BF%) were used to define obesity. The association of muscle and fat indicators were analyzed by Pearson's correlation coefficient. Pearson Chi-Square test was utilized to estimate odds ratios (OR) and 95% confidence intervals (CI) on the risk of sarcopenia according to obesity status. Results: 1637 old subjects (74.8 ± 7.8 years) participated in this study. Not only fat mass, but also muscle indicators were positively correlated to BMI and body weight (p < 0.05). Absolute muscle and fat mass in different positions had positive associations (p < 0.05). Muscle mass and strength were negatively related to appendicular fat mass percentage (p < 0.05). When defined by BMI (OR = 0.69, 95% CI [0.56, 0.86]; p = 0.001), obesity was a protective factor for sarcopenia, whilst it was a risk factor when using BF% (OR = 1.38, 95% CI [1.13, 1.69]; p = 0.002) as the definition. The risk of sarcopenia reduced with the increase of BMI in both genders. It was increased with raised BF% in males but displayed a U-shaped curve for females. BF% 26.0-34.6% in old females and lower than 23.9% in old males are recommended for sarcopenia and obesity prevention. Conclusion: Skeletal muscle mass had strong positive relationship with absolute fat mass but negative associations with the percentage of appendicular fat mass. Obesity was a risk factor of sarcopenia when defined by BF% instead of BMI. The management of BF% can accurately help elderly people prevent against both sarcopenia and obesity.


Subject(s)
Body Composition , Obesity , Sarcopenia , Aged , Female , Humans , Male , Body Weight , Hand Strength , Obesity/complications , Obesity/epidemiology , Obesity/diagnosis , Sarcopenia/etiology , Sarcopenia/prevention & control , Body Mass Index
18.
Discov Nano ; 18(1): 13, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36795193

ABSTRACT

Large-area, continuous monolayer WS2 exhibits great potential for future micro-nanodevice applications due to its special electrical properties and mechanical flexibility. In this work, the front opening quartz boat is used to increase the amount of sulfur (S) vapor under the sapphire substrate, which is critical for achieving large-area films during the chemical vapor deposition processes. COMSOL simulations reveal that the front opening quartz boat will significantly introduce gas distribute under the sapphire substrate. Moreover, the gas velocity and height of substrate away from the tube bottom will also affect the substrate temperature. By carefully optimizing the gas velocity, temperature, and height of substrate away from the tube bottom, a large-scale continues monolayered WS2 film was achieved. Field-effect transistor based on the as-grown monolayer WS2 showed a mobility of 3.76 cm2V-1 s-1 and ON/OFF ratio of 106. In addition, a flexible WS2/PEN strain sensor with a gauge factor of 306 was fabricated, showing great potential for applications in wearable biosensors, health monitoring, and human-computer interaction.

19.
Food Chem ; 402: 134179, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137387

ABSTRACT

Pickering emulsion gels (PKEGs) are being explored as solid fat substitutes and delivery systems due to their semi-solid textures and high stabilities. However, these PKEGs have relatively high-fat content, which is undesirable for nutritional and cost reasons. Therefore, in this study, low-fat PKEGs (10 % oil content) were successfully fabricated using zein/phytic acid (ZPA) complex nanoparticles with zein to phytic acid mass ratio of 1:0.006. These nanoparticles have a mean diameter of around 161 nm and wettability of around 89°. The formation of PKEGs were confirmed by the results of dynamic rheology (G' > G″). Confocal laser scanning microscope showed that the complex nanoparticles formed a dense barrier on the surface of the oil droplets, which prevented the oil droplets against coalescence. The chemical stability of curcumin was greatly improved by encapsulation in the PKEGs. The low-fat PKEGs developed in this study may be effective delivery systems for hydrophobic bioactive substances.


Subject(s)
Curcumin , Fat Substitutes , Nanoparticles , Zein , Zein/chemistry , Emulsions/chemistry , Phytic Acid , Curcumin/chemistry , Particle Size , Gels/chemistry , Nanoparticles/chemistry
20.
Int J Clin Pharmacol Ther ; 61(1): 1-7, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36331012

ABSTRACT

OBJECTIVE: To investigate the association between polymorphisms in the SLC22A2 gene and the hematological toxicity of oxaliplatin in colorectal cancer (CRC) patients receiving chemotherapy. MATERIALS AND METHODS: A total of 81 patients with colon or rectal cancer were included in the study. The single nucleotide polymorphisms (SNPs) rs3127573, rs316019, and rs1869641 of the SLC22A2 gene were selected for genotyping using the polymerase chain reaction (PCR) and sequence analysis. Oxaliplatin-associated hematological toxicities were evaluated using the Common Toxicity Criteria for Adverse Events (CTCAE, Version 5.0). RESULTS: The rs1869641 genotype was significantly associated with the occurrence of thrombocytopenia (p = 0.047), whereas the rs316019 genotype was significantly associated with severity of leucopenia and neutropenia (p = 0.004 and 0.001, respectively). The rs3127573 genotype was not associated with hematological toxicities arising during chemotherapy with oxaliplatin. CONCLUSION: It is shown here, for the first time, that the rs316019 gene variant of the SLC22A2 gene may be associated with the hematological toxicity of oxaliplatin. Patients with genotype CA/AA of rs316019 are more likely to develop serious hematological adverse effects.


Subject(s)
Colorectal Neoplasms , Neutropenia , Humans , Oxaliplatin/adverse effects , Polymorphism, Single Nucleotide , Neutropenia/chemically induced , Genotype , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Fluorouracil/therapeutic use , Organic Cation Transporter 2/genetics , Organic Cation Transporter 2/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL