Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.375
Filter
1.
J Environ Sci (China) ; 150: 202-217, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306396

ABSTRACT

This study focuses on the spatiotemporal distribution, urban-rural variations, and driving factors of ammonia Vertical Column Densities (VCDs) in China's Yangtze River Delta region (YRD) from 2008 to 2020. Utilizing data from the Infrared Atmospheric Sounding Interferometer (IASI), Generalized Additive Models (GAM), and the GEOS-Chem chemical transport model, we observed a significant increase of NH3 VCDs in the YRD between 2014 and 2020. The spatial distribution analysis revealed higher NH3 concentrations in the northern part of the YRD region, primarily due to lower precipitation, alkaline soil, and intensive agricultural activities. NH3 VCDs in the YRD region increased significantly (65.18%) from 2008 to 2020. The highest growth rate occurs in the summer, with an annual average growth rate of 7.2% during the period from 2014 to 2020. Agricultural emissions dominated NH3 VCDs during spring and summer, with high concentrations primarily located in the agricultural areas adjacent to densely populated urban zones. Regions within several large urban areas have been discovered to exhibit relatively stable variations in NH3 VCDs. The rise in NH3 VCDs within the YRD region was primarily driven by the reduction of acidic gases like SO2, as emphasized by GAM modeling and sensitivity tests using the GEOS-Chem model. The concentration changes of acidic gases contribute to over 80% of the interannual variations in NH3 VCDs. This emphasizes the crucial role of environmental policies targeting the reduction of these acidic gases. Effective emission control is urgent to mitigate environmental hazards and secondary particulate matter, especially in the northern YRD.


Subject(s)
Air Pollutants , Ammonia , Environmental Monitoring , Rivers , China , Ammonia/analysis , Air Pollutants/analysis , Rivers/chemistry , Agriculture , Spatio-Temporal Analysis , Seasons
2.
Mol Cancer ; 23(1): 213, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342168

ABSTRACT

The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.


Subject(s)
Ferroptosis , Immunotherapy , Neoplasms , Ferroptosis/genetics , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Immunotherapy/methods , Animals , Adenosine/analogs & derivatives , Adenosine/metabolism , Gene Expression Regulation, Neoplastic , RNA Processing, Post-Transcriptional , RNA Methylation
3.
J Exp Clin Cancer Res ; 43(1): 266, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342365

ABSTRACT

Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Phenotype , Humans , CD8-Positive T-Lymphocytes/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Immunotherapy/methods , Tumor Microenvironment/immunology
4.
J Health Popul Nutr ; 43(1): 152, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342405

ABSTRACT

BACKGROUND: This study aimed to assess the effects of enteral nutrition with different protein concentrations on muscle mass in severe pneumonia patients, providing insights for enteral nutrition practice in intensive care units (ICUs). METHODS: A total of 120 severe pneumonia patients admitted to Dazhou Central Hospital's ICU between June 1, 2022, and February 1, 2023, meeting inclusion criteria, were randomly assigned to either a high-protein group (n = 60, 1.8 g/kg/d) or a standard-protein group (n = 60, 1.2 g/kg/d). Changes in relevant indicators were monitored on days 1, 5, and 10 of ICU admission, including quadriceps and diaphragm thickness, nutritional status (prealbumin and albumin), and adverse events such as diarrhea and constipation. RESULTS: Autoregressive of order 1 model (AR(1)) analysis revealed a decrease in both quadriceps and diaphragm thickness over time in both groups. A significant group × time interaction was observed in quadriceps thickness. By day 10, compared to baseline, quadriceps thickness decreased in the high-protein (-0.315 cm [95% CI, -0.340 to -0.289]) and standard-protein (-0.429 cm [95% CI, -0.455 to -0.404]) groups. The high-protein group exhibited a lower quadriceps atrophy rate (13.97 ± 2.43%) compared to the standard-protein group (18.96 ± 2.61%), showing a significant difference (P < 0.001). No significant differences were found in diaphragmatic thickness between groups and over time. By day 10, both groups exhibited decreased diaphragmatic muscle thickness compared to baseline. The high-protein group (33.76 ± 5.09%) had a slightly lower phrenic atrophy rate compared to the standard-protein group (33.41 ± 4.53%). Both groups experienced enteral nutritional intolerance manifested as diarrhea, constipation, and other adverse events. CONCLUSION: High-protein enteral nutrition significantly improved quadriceps thickness and demonstrated good safety in severe pneumonia patients, suggesting its suitability for widespread clinical application.


Subject(s)
Enteral Nutrition , Intensive Care Units , Pneumonia , Respiration, Artificial , Humans , Enteral Nutrition/methods , Male , Female , Middle Aged , Respiration, Artificial/methods , Pneumonia/therapy , Aged , Dietary Proteins/administration & dosage , Nutritional Status , Diaphragm , Quadriceps Muscle , Muscular Atrophy/prevention & control , Muscular Atrophy/etiology , Diet, High-Protein/methods
5.
PLoS One ; 19(9): e0310645, 2024.
Article in English | MEDLINE | ID: mdl-39298528

ABSTRACT

BACKGROUND: International students contribute significantly to both the economy and the intellectual and cultural landscape of host countries. Their interactions with domestic students foster personal, socioeconomic, and political development, promopting a broader understanding of diverse cultures and values. This highlights how crucial international education is for staying competitive globally. However, international students often face challenges such as poor mental health, linguistic and cultural barriers, acculturative stress, and limited health literacy. Therefore, supporting their academic success and well-being on college campuses is essential. This protocol aims to describe strategies used to evaluate the effect of interventions on international students' mental health and wellbeing and propose directions for future research based on the evidence. METHODS: We will conduct an extensive search in several databases including CINAHL, PubMed, Web of Science, PsyInFO, ERIC, and Google Scholar with no date limits. Two reviewers will independently screen the literature and extract data. We will then conduct meta-analyses of the extracted data. DISCUSSION: To the best of our knowledge, this study is the first systematic review with meta-analysis focusing on interventions to enhance mental health and wellbeing among international college students. This study will provide most updated empirical evidence on the effects of interventions aimed to improve international students' mental health and wellbeing. The findings from this study will summarize the importance of a range of interventions being available to international students who experience psychological distress and the effectiveness of each intervention. This study will also highlight the gap for researchers to focus on for future studies. TRIAL REGISTRATION: PROSPERO registration number: CRD42024528767.


Subject(s)
Mental Health , Students , Systematic Reviews as Topic , Humans , Students/psychology , Universities , Meta-Analysis as Topic
6.
Adv Mater ; : e2410464, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235583

ABSTRACT

The interfacial management in perovskite solar cells (PSCs), including mitigating the carrier transport barrier and suppressing non-radiative recombination, still remains a significant challenge for efficiency and stability enhancement. Herein, by screening a family of fluorine (F) terminated dual-site organic dipole molecules, the study aims to gain insight into the molecular dipole array toward tunable interfacial field. Both experimental and theoretical results reveal that these functional interfacial dipole molecules can effectively anchor on perovskite surface through Lewis acid-base interaction. In addition, the tailored side-chain with terminated F atoms allows for altering and constructing a well matched perovskite/Spiro-OMeTAD interfacial contact. As a result, the inserting dual-site organic dipole array effectively modulates the interface to deliver a gradient energy level alignment, facilitating carrier extraction and transport. The optimal dual-site dipole trifluoro-methanesulfonamide mediated N-i-P PSCs achieve the highest efficiency of 25.47%, together with enhanced operational stability under 1000 h of the simulated 1-sun illumination exposure. These findings are believed to provide insight into the design of dual-site molecular dipole with sufficient interfacial tunability for perovskite-based optoelectronic devices.

7.
J Med Chem ; 67(18): 16820-16834, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39237317

ABSTRACT

In vivo bioimaging using shortwave infrared (SWIR) (1000-2000 nm) molecular dyes enables deeper penetration and higher contrast compared to visible and near-infrared-I (NIR-I, 700-900 nm) dyes. Developing new SWIR molecules is still quite challenging. This study developed SRHCYs, a panel of fluorescent dyes based on hemicyanine, with adjustable absorbance (830-1144 nm) and emission (886-1217 nm) wavelength. The photophysical attributes of these dyes are precisely tailored by strengthening the donor parts and extending polymethine chains. SRHCY-3, with its clickable azido group, was chosen for high-performance imaging of blood vessels in living mice, enabling the precise detection of brain and lung cancer. The combination of these probes achieved in vivo multicolor imaging with negligible optical crosstalk. This report presents a series of SWIR hemicyanine dyes with promising spectroscopic properties for high-contrast bioimaging and multiplexing detection.


Subject(s)
Carbocyanines , Fluorescent Dyes , Optical Imaging , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Carbocyanines/chemistry , Carbocyanines/chemical synthesis , Mice , Humans , Infrared Rays , Lung Neoplasms/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Mice, Nude , Molecular Structure
8.
J Virol ; : e0118724, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297647

ABSTRACT

Human Na+-taurocholate cotransporting polypeptide (hNTCP) is predominantly expressed in hepatocytes, maintaining bile salt homeostasis and serving as a receptor for hepatitis B virus (HBV). hNTCP expression is downregulated during hepatocellular carcinoma (HCC) development. In this study, we investigated the molecular mechanisms underlying hNTCP dysregulation using HCC tissues and cell lines, and primary human hepatocytes (PHHs). Firstly, we observed a significant reduction of hNTCP in HCC tumors compared to adjacent and normal tissues. Additionally, hNTCP mRNA levels were markedly lower in HepG2 cells compared to PHHs, which was corroborated at the protein level by immunoblotting. Sanger sequencing confirmed identical sequences for hNTCP promoter, exons, and mRNA coding sequences between PHH and HepG2 cells, indicating no mutations or splicing alterations. We then assessed the epigenetic status of hNTCP. The hNTCP promoter, with low CG content, showed no significant methylation differences between PHH and HepG2 cells. Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) revealed a loss of activating histone posttranslational modification (PTM) H3K27ac near the hNTCP transcription start site (TSS) in HepG2 cells. This loss was also confirmed in HCC tumor cells compared to adjacent and background cells. Treating HepG2 cells with histone deacetylase inhibitors enhanced H3K27ac accumulation and glucocorticoid receptor (GR) binding at the hNTCP TSS, significantly increasing hNTCP mRNA and protein levels, and rendering the cells susceptible to HBV infection. In summary, histone PTM-related epigenetic mechanisms play a critical role in hNTCP dysregulation in liver cancer cells, providing insights into hepatocarcinogenesis and its impact on chronic HBV infection. IMPORTANCE: HBV is a hepatotropic virus that infects human hepatocytes expressing the viral receptor hNTCP. Without effective antiviral therapy, chronic HBV infection poses a high risk of liver cancer. However, most liver cancer cell lines, including HepG2 and Huh7, do not support HBV infection due to the absence of hNTCP expression, and the mechanism underlying this defect remains unclear. This study demonstrates a significant reduction of hNTCP in hepatocellular carcinoma samples and HepG2 cells compared to normal liver tissues and primary human hepatocytes. Despite identical hNTCP genetic sequences, epigenetic analyses revealed a loss of the activating histone modification H3K27ac near the hNTCP transcription start site in cancer cells. Treatment with histone deacetylase inhibitors restored H3K27ac levels, reactivated hNTCP expression, and rendered HepG2 cells susceptible to HBV infection. These findings highlight the role of epigenetic modulation in hNTCP dysregulation, offering insights into hepatocarcinogenesis and its implications for chronic HBV infection.

9.
Sci Total Environ ; 954: 176221, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304146

ABSTRACT

With the wide application of phthalic acid esters (PAEs) in the manufacturing of plastic products, a large number of PAEs were discharged into marine ecosystem and accumulated in fish, which has posed a serious threat to marine ecological environment and fishery resources. However, the bioaccumulation of PAEs in fish in mangrove ecosystem, the most productive marine ecosystem, has not been well characterized. In this study, dominant fish and their potential food sources (including particulate organic matter (POM), sedimentary organic matter (SOM), Metapenaeus ensis (Shrimp) and Oreochromis (Ore) were collected from Dongzhai Harbor, a typical mangrove ecosystem. The concentrations of nine PAEs in fish and their potential food sources were determined. Then stable nitrogen and carbon isotope analysis, combined with a new Bayesian mixing model (MixSIMMR) was used to quantify the diet compositions of fish and elucidate the effect of dietary habit on PAEs bioaccumulation in fish. The results indicated that the median concentration of ∑9PAEs in fish was 1119 µg/kg ww, positioning it at a moderate to low level in comparison to other regions. di-n-butyl phthalate (DBP) and diisononyl ortho-phthalate (DINP) were the dominant PAEs in fish. The PAEs concentration in demersal fish was significantly higher than that of pelagic fish, which may be attributed to the substantial contributions of shrimp (28.5 %) and POM (25.3 %) to the diet of demersal fish. This study provided new insights on the bioaccumulation of PAEs in dominant mangrove fish and confirmed that habitat preferences and food sources could significantly influence the bioaccumulation of PAEs in fish.

10.
Adv Med Sci ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326735

ABSTRACT

BACKGROUND: The leucine-rich repeat-containing (LRRC) superfamily members are known for their significant roles in tumorigenesis and cellular proliferation. However, the specific regulatory role of LRRC45 in lung cancer remains unexplored. This study investigated the impact and underlying mechanisms of LRRC45 on the proliferative, migratory, and invasive capacities of lung adenocarcinoma (LUAD) cells, potentially identifying new targets for therapeutic intervention. MATERIAL AND METHODS: The importance of LRRC45 in lung cancer was analyzed using the online databases of UCSC Xena, TCGA, TISIDB, and UALCAN, whereas to detect target gene expression, we used the qRT-PCR, Western blot, and immunofluorescence confocal. The cell growth was monitored by colony formation assay and migration was examined by cell migration assay. Finally, a xenograft mouse tumor model using A549 cells was used to explore the in vivo effect of LRRC45 in lung cancer. RESULTS: Inhibition of LRRC45 expression led to a notable decrease in proliferation, migration, and invasion of A549 and H1299 cells. LRRC45 silencing significantly reduced the tumor volume and improved the mice's survival. Additionally, inhibition of LRRC45 expression dramatically suppressed c-MYC, Slug, MMP2, and MMP9 expression. Overexpression of c-MYC and/or Slug in the LRRC45-deficient cells can partially or totally restore the LRRC45 deficiency-suppressed growth. Moreover, the overexpression of MMP2 and/or MMP9 could partially or totally restore LRRC45 deficiency-reduced cell metastasis. CONCLUSIONS: LRRC45 could promote the proliferative, migrative, and invasive capacities of lung cancer cells by increasing c-MYC, Slug, MMP2, and MMP9 expression, indicating the therapeutic implications and potential significance of these pathways in lung cancer.

11.
mBio ; : e0261524, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329526

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant public health burden with no cure currently available. The research to cure HBV has long been hampered by the lack of immunocompetent small animal models capable of supporting HBV infection. Here, we set out to explore the feasibility of the golden Syrian hamster as an immunocompetent small rodent model for HBV infection. We first started with in vitro assessments of the HBV replication cycle in primary hamster hepatocytes (PHaHs) by adenoviral HBV (Ad-HBV) transduction. Our results demonstrated that PHaHs support HBV reverse transcription and subsequent cccDNA formation via the intracellular recycling pathway. Next, with luciferase reporter assays, we confirmed that PHaHs support the activities of all HBV major promoters. Then, we transduced PHaHs with an adenoviral vector expressing HBV receptor human Na+/taurocholate cotransporting polypeptide NTCP (Ad-huNTCP), followed by HBV inoculation. While the untransduced PHaHs did not support HBV infection, Ad-huNTCP-transduced PHaHs supported de novo cccDNA formation, viral mRNA transcription, and expression of viral antigens. We then humanized the amino acid (aa) residues of hamster NTCP (haNTCP) critical for HBV entry, aa84-87 and aa157-165, and transfected HepG2 cells with constructs expressing wild-type haNTCP and humanized-haNTCP, H84R/P87N and H84R/P87N/G157K/M160V/M165L, respectively, followed by HBV inoculation. The results showed that the humanization of H84R/P87N alone was sufficient to support HBV infection at a level comparable to that supported by huNTCP. Taken together, the above in vitro evidence supports the future direction of humanizing haNTCP for HBV infection in vivo.IMPORTANCEOne of the biggest challenges in developing an HBV cure is the lack of immunocompetent animal models susceptible to HBV infection. Developing such models in mice has been unsuccessful due to the absence of a functional HBV receptor, human NTCP (huNTCP), and the defect in supporting viral cccDNA formation. In search of alternative models, we report herein multiple lines of in vitro evidence for developing a golden Syrian hamster model for HBV infection. We demonstrate that the primary hamster hepatocytes (PHaHs) support HBV replication, transcription, and cccDNA formation, and PHaHs are susceptible to de novo HBV infection in the presence of huNTCP. Furthermore, expressing hamster NTCP with two humanized residues critical for HBV entry renders HepG2 cells permissive to HBV infection. Thus, our work lays a solid foundation for establishing a gene-edited hamster model that expresses humanized NTCP for HBV infection in vivo.

12.
Article in English | MEDLINE | ID: mdl-39317522

ABSTRACT

The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.

13.
Arab J Gastroenterol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39289082

ABSTRACT

Magnetically controlled capsule endoscopy (MCE) is a non-invasive method for gastropathy examination. However, due to the influence of gravity and lumen structure, the traditional capsule endoscopy rapidly passes through the cardia, leading to insufficient observation of the cardia mucosa. Case Summary. The patient, a 53-year-old male, had a history of subarachnoid hemorrhage for 5 years, and it has been 5 years since the aneurysm embolization.Computed Tomography Angiography (CTA) indicated the presence of an anterior cruciate aneurysm. Given the risks associated with traditional intubated gastroscopy, magnetic controlled capsule gastroscopy was chosen for gastric examination. Following the standard operating procedure, routine magnetic controlled capsule endoscopy was performed, and no lesions were detected.We combined magnetic force and patient posture adjustment to guide the capsule to pass through the cardia slowly and return to the esophagus, successfully detecting a concealed cardia lesion.Afterwards, the lesions of the cardia were treated with a magnifying gastroscope and endoscopic submucosal dissection (ESD).Pathological findings showed that adenocarcinoma was confined to the mucosa membrane, and in the postoperative pathological study, no tumor remnants or metastasis were discovered. This paper reports a case of a patient undergoing a physical examination, but no lesion was found during a routine examination using the magnetically controlled capsule gastroscope. However, we discovered a case of hidden early cardia cancer after guiding the capsule gastroscope back into the esophagus under magnetic control.

14.
R Soc Open Sci ; 11(9): 240459, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39263455

ABSTRACT

Fine-grain copper (Cu) films (grain size: 100.36 nm) with a near-atomic-scale surface (0.39 nm) were electroplated. Without advanced post-surface treatment, Cu-Cu direct bonding can be achieved with present-day fine-grain Cu films at 130℃ in air ambient with a minimum pressure of 1 MPa. The instantaneous growth rate on the first day is 164.29 nm d-1. Also, the average growth rate (∆R/∆t) is evaluated by the present experimental results: (i) 218.185 nm d-1 for the first-day period and (ii) 105.58 nm d-1 during the first 14-day period. Ultrafast grain growth and near-atomic-scale surface facilitate grain boundary motion across the bonding interface, which is the key to achieve Cu-Cu direct bonding at 130℃ in air ambient.

15.
Opt Lett ; 49(18): 5304-5307, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39270291

ABSTRACT

Stereoscopic vision plays a significant role in a three-dimensional measurement. With the calibrated intrinsic and extrinsic parameters, stereoscopic vision can complete an accurate measurement. However, the extrinsic parameters are inevitably disturbed by variations in the environment, such as vibration and assembly stress, resulting in a huge measurement error. To overcome the problem, with the assistance of two known-distance points, this Letter proposes correction methods based on triangulation and differential geometry, respectively. The methods formulate the distance and solve the corrected extrinsic parameters. Simulated and actual experiments are carried out, and the results show high accuracy and stability of the proposed methods.

16.
Sci Total Environ ; 952: 175942, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39218113

ABSTRACT

Numerous studies have reported in situ monitoring and source analysis in the Tibetan Plateau (TP), a region crucial for climate systems. However, a gap remains in understanding the comprehensive distribution of atmospheric pollutants in the TP and their transboundary pollution transport. Here, we analyzed the high-resolution satellite TROPOMI observations from 2018 to 2023 in Tibet and its surrounding areas. Our result reveals that, contrary to the results from in situ surface CO monitoring, Tibet exhibits a distinct seasonality in atmospheric carbon monoxide total column average mixing ratio (XCO), with higher levels in summer and lower levels in winter. This distinctive seasonal pattern may be related to the TP's 'air pump' effect and the Asia summer monsoon. Before 2022, the annual growth rate of XCO in Tibet was 1.63 %·year-1; however, it declined by 6.88 % in 2022. Source analysis and satellite observations suggest that CO from South Asia may enter Tibet either by crossing the Himalayas or through the Yarlung Zangbo Grand Canyon. We discovered that spring outbreaks of open biomass burning (OBB) in South and Southeast Asia led to an 11.57-27.98 % increase in XCO over Tibet. Favorable wind pattern and unique topography of the canyon promote the high concentrations CO transport to Tibet. Our greater concern is whether the TP will experience more severe transboundary pollution in the future.

17.
Diabetes Obes Metab ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39228284

ABSTRACT

AIM: Non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease (MAFLD) remain challenging. We aimed to identify novel key genes as non-invasive biomarkers for MAFLD, elucidate causal relationships between biomarkers and MAFLD and determine the role of immune cells as potential mediators. MATERIALS AND METHODS: Utilizing published transcriptome data of patients with biopsy-proven MAFLD, we applied linear models for microarray data, least absolute shrinkage and selector operation (LASSO) regressions and receiver operating characteristic (ROC) curve analyses to identify and validate biomarkers for MAFLD. Using the expression quantitative trait loci database and a cohort of 778 614 Europeans, we used Mendelian randomization to analyse the causal relationships between key biomarkers and MAFLD. Additionally, mediation analysis was performed to examine the involvement of 731 immunophenotypes in these relationships. RESULTS: We identified 31 differentially expressed genes, and LASSO regression showed three hub genes, IGFBP2, PEG10, and P4HA1, with area under the receiver operating characteristic (AUROC) curve of 0.807, 0.772 and 0.791, respectively, for identifying MAFLD. The model of these three genes had an AUROC of 0.959 and 0.800 in the development and validation data sets, respectively. This model was also validated using serum-based enzyme-linked immunosorbent assay data from MAFLD patients and control subjects (AUROC: 0.819, 95% confidence interval: 0.736-0.902). PEG10 was associated with an increased MAFLD risk (odds ratio = 1.106, p = 0.032) via inverse variance-weighted analysis, and about 30% of this risk was mediated by the percentage of CD11c + CD62L- monocytes. CONCLUSIONS: The MAFLD panels have good diagnostic accuracy, and the causal link between PEG10 and MAFLD was mediated by the percentage of CD11c + CD62L- monocytes.

18.
J Ethnopharmacol ; 337(Pt 1): 118784, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244176

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS: The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS: Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION: This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.

19.
Bioinformatics ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292557

ABSTRACT

MOTIVATION: The microbes in human body play a crucial role in influencing the functions of drugs, as they can regulate the activities and toxicities of drugs. Most recent methods for predicting drug-microbe associations are based on graph learning. However, the relationships among multiple drugs and microbes are complex, diverse and heterogeneous. Existing methods often fail to fully model the relationships. In addition, the attributes of drug-microbe pairs exhibit long-distance spatial correlations, which previous methods have not integrated effectively. RESULTS: We propose a new prediction method named DHDMP which is designed to encode the relationships among multiple drugs and microbes and integrate the attributes of various neighbor nodes along with the pairwise long-distance correlations. First, we construct a hypergraph with dynamic topology, where each hyperedge represents a specific relationship among multiple drug nodes and microbe nodes. Considering the heterogeneity of node attributes across different categories, we developed a node category-sensitive hypergraph convolution network to encode these diverse relationships. Second, we construct homogeneous graphs for drugs and microbes respectively, as well as drug-microbe heterogeneous graph, facilitating the integration of features from both homogeneous and heterogeneous neighbors of each target node. Third, we introduce a graph convolutional network with cross-graph feature propagation ability to transfer node features from homogeneous to heterogeneous graphs for enhanced neighbor feature representation learning. The propagation strategy aids in the deep fusion of features from both types of neighbors. Finally, we design spatial cross-attention to encode the attributes of drug-microbe pairs, revealing long-distance correlations among multiple pairwise attribute patches. The comprehensive comparison experiments showed our method outperformed state-of-the-art methods for drug-microbe association prediction. The ablation studies demonstrated the effectiveness of node category-sensitive hypergraph convolution network, graph convolutional network with cross-graph feature propagation, and spatial cross-attention. Case studies on 3 drugs further showed DHDMP's potential application in discovering the reliable candidate microbes for the interested drugs. AVAILABILITY: Source codes and supplementary materials are available at https://github.com/pingxuan-hlju/DHDM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

20.
Sci Total Environ ; 954: 176447, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307370

ABSTRACT

Formaldehyde (HCHO), glyoxal (CHOCHO), and nitrogen dioxide (NO2) are crucial in atmospheric photochemical processes at both surface and elevated altitudes. This study presents synchronous multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of the vertical distributions of summertime HCHO, CHOCHO and NO2 in four representative megacities within the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Sichuan Basin (SB), and Pearl River Delta (PRD) regions of China. The vertical distributions of HCHO and CHOCHO tended to occur at higher altitudes compared to NO2, influenced by both primary emissions near the ground and photochemical oxidation processes at elevated altitudes. Source separation regression analysis using the CO-CHOCHO trace pair identified secondary formation as the predominant source of ambient HCHO. In urban areas, the ratio of CHOCHO to secondary HCHO (RGFsec) serves as a more reliable metric at ground level for diagnosing VOC precursor sources, excluding the interference of primary and background HCHO. The increase in RGF values at higher altitudes highlights the relative contribution of VOCs favoring CHOCHO production. Moreover, four indicators (e.g. FNR, FNRsec, GNR, and MNR) were utilized to characterize O3 formation sensitivity at different altitudes. The range of FNR, FNRsec, GNR, and MNR marking the O3 formation sensitivity regime varies regionally, highlighting the need for localized assessments. The VOC-limited regime dominated at the ground level, whereas the contribution of the NOx-limited regime increased with altitude. Therefore, a comprehensive control strategy addressing both VOC and NOx emissions across different altitudes is essential for effectively mitigating photochemical pollution in urban areas of China.

SELECTION OF CITATIONS
SEARCH DETAIL