Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Molecules ; 28(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38067644

ABSTRACT

Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.


Subject(s)
Pesticides , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Pesticides/analysis , Environmental Monitoring
2.
Materials (Basel) ; 16(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004995

ABSTRACT

Super-sensitive malathion detection was achieved using a nonenzymatic electrochemical sensor based on a CuO/ZnO-modified glassy carbon electrode (GCE). Due to the high affinity between the Cu element and the sulfur groups in malathion, the developed CuO-ZnO/GCE sensor may bond malathion with ease, inhibiting the redox signal of the Cu element when malathion is present. In addition to significantly increasing the ability of electron transfer, the addition of 3D-flower-like ZnO enhances active sites of the sensor interface for the high affinity of malathion, giving the CuO-ZnO/GCE composite an exceptional level of sensitivity and selectivity. This enzyme-free CuO-ZnO/GCE malathion sensor demonstrates outstanding stability and excellent detection performance under optimal operating conditions with a wide linear range of malathion from 0 to 200 nM and a low detection limit of 1.367 nM. A promising alternative technique for organophosphorus pesticide (OP) determination is offered by the analytical performance of the proposed sensor, and this method can be quickly and sensitively applied to samples that have been contaminated with these pesticides.

3.
Molecules ; 28(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513259

ABSTRACT

Carbon materials with elusive 0D, 1D, 2D, and 3D nanostructures and high surface area provide certain emerging applications in electrocatalytic and photocatalytic CO2 utilization. Since carbon possesses high electrical conductivity, it expels the photogenerated electrons from the catalytic surface and can tune the photocatalytic activity in the visible-light region. However, the photocatalytic efficiency of pristine carbon is comparatively low due to the high recombination of photogenerated carriers. Thus, supporting carbon materials, such as graphene, CNTs (Carbon nanotubes), g-C3N4, MWCNs (Multiwall carbon nanotubes), conducting polymers, and its other simpler forms like activated carbon, nanofibers, nanosheets, and nanoparticles, are usually combined with other metal and non-metal nanocomposites to increase the CO2 absorption and conversion. In addition, carbon-based materials with transition metals and organometallic complexes are also commonly used as photocatalysts for CO2 reduction. This review focuses on developing efficient carbon-based nanomaterials for the photoconversion of CO2 into solar fuels. It is concluded that MWCNs are one of the most used materials as supporting materials for CO2 reduction. Due to the multi-layered morphology, multiple reflections will occur within the layers, thus enhancing light harvesting. In particular, stacked nanostructured hollow sphere morphologies can also help the metal doping from corroding.

4.
Chemosphere ; 310: 136865, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36244422

ABSTRACT

Castor cake is a major by-product generated after castor oil extraction and has been widely used as an organic fertilizer. Once applied to soil, a toxic alkaloid ricinine in castor cake may be released into soils and subsequently taken up by crops, which poses a potential threat to food safety and human health. However, the environmental fate of castor cake derived ricinine in agroecosystems remains unclear. In this study, the release and metabolism of ricinine in soils were conducted using soil pot experiments with different castor cake application rates. The analytical methodology of ricinine quantification in soil pore water was first established using solid phase extraction (SPE) coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A non-target screening workflow associated with LC-QTOF/MS and SIRIUS platform was further developed to identify ricinine metabolites in soil pore water. After castor cake application, the ricinine concentrations in soil pore water significantly increased to 297-7990 µg L-1 at 1 day and then gradually decreased to 62.1-3460 µg L-1 at 7 days and 1.70-279 µg L-1 at 14 days for the selected two tested soils with castor cake application rates of 2, 10, and 20 g castor cake/kg soil. In addition, two ricinine metabolites R-194 and R-180 were tentatively identified and one ricinine metabolite N-demethyl-ricinin was confirmed through authentic reference standard for the first time by the developed non-target screening workflow. This study highlights the release and metabolism of toxic alkaloid ricinine in soils once applied castor cake as an organic fertilizer. Ricinine could be released into soil pore water in a short-term after castor cake application and then undergo demethylation, hydroxylation, and hydroxylation followed by methylation metabolisms over time in agroecosystems.


Subject(s)
Alkaloids , Fertilizers , Humans , Fertilizers/analysis , Soil , Castor Oil , Workflow , Chromatography, Liquid , Alkaloids/analysis , Mass Spectrometry , Water/analysis
5.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432216

ABSTRACT

Heavy metals are one of the most important classes of environmental pollutants which are toxic to living beings. Many efforts are made by scientists to fabricate better sensors for the identification and quantification of heavy metal ions (HMI) in water and food samples to ensure good health. Electrocatalysts have been demonstrated to play an important role in enhancing the sensitivity and selectivity of HMI detection in electrochemical sensors. In this review, we presented morphologically well-tuned nanomaterials used as efficient sensor materials. Based on the molecular dimensions, shapes, and orientation, nanomaterials can be classified into 0-D, 1-D, 2-D, and 3-D nanomaterials. Active surface areas with significant exposure of active sites and adsorption-desorption abilities are extensively varied with dimensionality, which in turn ultimately influence the sensing performance for HMI.

6.
Environ Technol ; : 1-11, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34057402

ABSTRACT

Polymers are highly promising materials for capturing carbon dioxide (CO2), a greenhouse gas. Hence in this work, we prepared phyllosilicate supported mesoporous polymer via reversible addition-fragmentation chain transfer (RAFT) polymerisation, which is the one among the controlled radical polymerisation. The mesoporous material anchored on dodecanethiol trithiocarbonate acts as a chain transfer agent (CTA) for the polymerisation of chloromethyl styrene and further conversion to quaternary ammonium compound which is effective to trap CO2 using tertiary amine. The synthesised porous phyllosilicate/polymer nanocomposites have been characterised by using various analytical tools. The CO2 sorption experiments were carried out by passing CO2 onto the synthesised porous phyllosilicate/polymer nanocomposites. The sorption kinetics was monitored by X-Ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) spectra in the presence of carbonate were obtained by reaction of quaternary ammonium hydroxide and CO2. The phyllosilicate anchored macromolecular CTA (macro-CTA) and the surface-initiated polymer nanocomposites encompassed apparent surface areas of 94.5 and 26.8 m2 g-1, respectively. In addition, the total pore volumes calculated for the macro-CTA and polymer were found to be 0.27 and 0.095 cm3g-1, while the average pore sizes were 14.24 and 11.46 nm, respectively. The CO2 sorption capacity of the phyllosilicate/polymer nanocomposites, monitored at different temperatures, is the fastest for 25°C but slower for the sample treated at 50°C which may due to the dipole and quadrupole interaction.

7.
Environ Int ; 131: 104976, 2019 10.
Article in English | MEDLINE | ID: mdl-31336255

ABSTRACT

The dissemination of pharmaceuticals in agroecosystems originating from land application of animal manure/sewage sludge and irrigation with treated wastewater in agricultural production has raised concern about the accumulation of pharmaceuticals in food products. The pathways of pharmaceutical entries via plant roots, transport to upper fractions, and the factors influencing these processes have yet been systematically elucidated, thus impeding the development of effective measures to mitigate pharmaceutical contamination in food crops. In this study, lettuce uptake of thirteen commonly used pharmaceuticals was investigated using a hydroponic experimental setting. Pharmaceutical sorption by lettuce roots was measured in order to evaluate the influence on pharmaceutical transport from roots to shoots. Small-sized pharmaceuticals e.g., caffeine and carbamazepine with molecular weight (MW) <300 g mol-1 and a low affinity to lettuce roots (sorption coefficient Kp < 0.05 L g-1) manifested substantial transport to shoots. Small-sized molecules lamotrigine and trimethoprim had a relatively strong affinity to lettuce roots (Kp > 12.0 L g-1) and demonstrated a reduced transport to shoots. Large-sized pharmaceuticals (e.g. MW >400 g mol-1) including lincomycin, monensin sodium, and tylosin could be excluded from cell membranes, resulting in the predominant accumulation in lettuce roots. Large-sized oxytetracycline existed as zwitterionic species that could slowly enter lettuce roots; however, the relatively strong interaction with lettuce roots limits its transport to shoots. The mass balance analysis revealed that acetaminophen, ß-estradiol, carbadox, estrone and triclosan were readily metabolized in lettuce with >90% loss during 144-h exposure period. A scheme was proposed to describe pharmaceutical uptake and transport in plant, which could reasonably elucidate many literature-reported results. Molecular size, reactivity and ionic speciation of pharmaceuticals, as well as plant physiology, collectively determine their uptake, transport and accumulation in plants.


Subject(s)
Lactuca/metabolism , Water Pollutants, Chemical/metabolism , Agriculture , Animals , Carbamazepine/metabolism , Manure , Plant Roots/metabolism , Sewage , Triclosan/metabolism , Wastewater/chemistry
8.
Water Res ; 161: 108-118, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31181446

ABSTRACT

Sequestration of anthropogenic antibiotics by biochars from waters may be a promising strategy to minimize environmental and human health risks of antibiotic resistance. This study investigated the long-term sequestration of lincomycin by 17 slow-pyrolysis biochars using batch sorption experiments during 365 days. Sorption kinetics were well fitted to the Weber-Morris intraparticle diffusion model for all tested biochars with the intraparticle diffusion rate constant (kid) of 25.3-166 µg g-1 day-0.5 and intercept constant (Cid) of 39.0-339 µg g-1, suggesting that the sorption kinetics were controlled by fast initial sorption and slow pore diffusion. The quasi-equilibrium sorption isotherms became more nonlinear with increasing equilibration time at 1, 7, 30, and 365 days, likely due to increasing abundance of heterogeneous sorption sites in biochars over time. Intriguingly, low-temperature (300 °C) and high-temperature (600 °C) biochars had faster sorption kinetics than intermediate-temperature (400-500 °C) biochars at the long term, which was attributed to greater specific surface area and pore volume of high-temperature biochars and the substantial and continuous release of dissolved organic carbon (DOC) from low-temperature biochars, respectively. DOC release enhanced lincomycin sorption by decreasing biochar particle size and/or increasing the accessibility of sorption sites and pores initially blocked by DOC. Additionally, a large fraction (>75%) of sorbed lincomycin in biochars after a 240-day equilibration could not be extracted by the acetonitrile/methanol extractant. The strong sorption and low extraction recovery demonstrated the great potential of biochars as soil amendments for long-term sequestration of antibiotics in-situ.


Subject(s)
Carbon , Lincomycin , Adsorption , Charcoal
9.
J Agric Food Chem ; 66(30): 7907-7915, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29957948

ABSTRACT

Pharmaceuticals can be metabolized after being taken up by plants. The metabolites could manifest similar or equivalent bioactivity to the parent compound, promoting the critical need to understand the metabolism in plants. Caffeine has been frequently detected in agriculture produce; however, little attention is given to its metabolites in vegetables. This study examined uptake and metabolism of caffeine in lettuce in a hydroponic system. Caffeine and its metabolites in aqueous solution and lettuce were identified and quantified using a liquid chromatography coupled to a QTrap tandem mass spectrometry instrument. After 144 h, over 50% of applied caffeine dissipated in the hydroponic lettuce system, and eight caffeine metabolites were identified primarily in the shoots. Caffeine underwent demethylation reactions, which were confirmed with authentic standards, and the total amount accounted for 20% of the initially applied caffeine. Other metabolism pathways included oxidation and hydroxylation, and the amount of metabolites increased over uptake time.


Subject(s)
Caffeine/metabolism , Lactuca/metabolism , Caffeine/chemistry , Hydroponics , Lactuca/chemistry , Lactuca/growth & development , Metabolomics , Oxidation-Reduction , Tandem Mass Spectrometry , Vegetables/chemistry , Vegetables/growth & development , Vegetables/metabolism
10.
Nat Microbiol ; 3(5): 622-631, 2018 05.
Article in English | MEDLINE | ID: mdl-29662128

ABSTRACT

Insulin resistance is a risk factor for obesity and diabetes and predisposes individuals to Staphylococcus aureus colonization; however, the contribution of S. aureus to insulin resistance remains unclear. Here, we show that S. aureus infection causes impaired glucose tolerance via secretion of an insulin-binding protein extracellular domain of LtaS, eLtaS, which blocks insulin-mediated glucose uptake. Notably, eLtaS transgenic mice (eLtaS trans ) exhibited a metabolic syndrome similar to that observed in patients, including increased food and water consumption, impaired glucose tolerance and decreased hepatic glycogen synthesis. Furthermore, transgenic mice showed significant metabolic differences compared to their wild-type counterparts, particularly for the early insulin resistance marker α-hydroxybutyrate. We subsequently developed a full human monoclonal antibody against eLtaS that blocked the interaction between eLtaS and insulin, which effectively restored glucose tolerance in eLtaS trans and S. aureus-challenged mice. Thus, our results reveal a mechanism for S. aureus-induced insulin resistance.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Insulin Resistance , Insulin/metabolism , Staphylococcal Infections/complications , Staphylococcus aureus/pathogenicity , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Bacterial Proteins/metabolism , Binding Sites , Cell Line , Female , Hep G2 Cells , Humans , Hydroxybutyrates/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Mice , Mice, Transgenic , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism
11.
Eur J Obstet Gynecol Reprod Biol ; 214: 150-155, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28535400

ABSTRACT

OBJECTIVES: This study was designed to compare the Cervista high risk (HR) human papillomavirus (HPV) test with Luminex XMAP technology for the detection of the relationship between HPV infection and cervical intraepithelial neoplasia. METHODS: In total, 3280 patients in a cervical specialty clinic were divided into two groups for either Cervista (1855 patients) or Luminex (1425 patients). Subsequent colposcopy examinations were performed in 1270 women with cytologic results showing ASCUS or higher level lesions. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were evaluated. RESULTS: The positive rates of the Cervista and Luminex groups were 61.48% and 67.43%, respectively, and occurrence in those 30-40 years old was most common. The typing of HPV showed that A9 positive cases were the most prevalent genotype (33.53%), followed by A5/A6 (16.44%) and A7 (11.37%) in the Cervista group, and HPV-16 was the most prevalent genotype (25.81%), followed by HPV-18 (18.6%) and HPV-31 (8.6%) in the Luminex group. Moreover, the overall concordance rate was 96.26% (95% confidence interval, 93.51-99.00%) in the 187 women with cytologic results of ASCUS or higher. There were no significant differences in the positive rates of HPV between the Cervista and Luminex groups, and both had a high sensitivity and NPV. CONCLUSIONS: The results showed a high good concordance between the two methods in diagnostic accuracy. Among the patients in the cervical specialty clinic, both the A9 group of HPV and HPV-16 showed the highest positive rate. Cervista and Luminex shared similar a clinical value in the detection of CIN2 or higher.


Subject(s)
DNA Probes, HPV , Reagent Kits, Diagnostic , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Neoplasms/diagnosis , Adolescent , Adult , Aged , Female , Humans , Middle Aged , Uterine Cervical Neoplasms/virology , Young Adult , Uterine Cervical Dysplasia/virology
12.
J Environ Qual ; 45(2): 519-27, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065399

ABSTRACT

The presence of antibiotics in agroecosystems raises concerns about the proliferation of antibiotic-resistant bacteria and adverse effects to human health. Soil amendment with biochars pyrolized from manures may be a win-win strategy for novel manure management and antibiotics abatement. In this study, lincomycin sorption by manure-derived biochars was examined using batch sorption experiments. Lincomycin sorption was characterized by two-stage kinetics with fast sorption reaching quasi-equilibrium in the first 2 d, followed by slow sorption over 180 d. The fast sorption was primarily attributed to surface adsorption, whereas the long-term slow sorption was controlled by slow diffusion of lincomycin into biochar pore structures. Two-day sorption experiments were performed to explore effects of biochar particle size, solid/water ratio, solution pH, and ionic strength. Lincomycin sorption to biochars was greater at solution pH 6.0 to 7.5 below the dissociation constant of lincomycin (7.6) than at pH 9.9 to 10.4 above its dissociation constant. The enhanced lincomycin sorption at lower pH likely resulted from electrostatic attraction between the positively charged lincomycin and the negatively charged biochar surfaces. This was corroborated by the observation that lincomycin sorption decreased with increasing ionic strength at lower pH (6.7) but remained constant at higher pH (10). The long-term lincomycin sequestration by biochars was largely due to pore diffusion plausibly independent of solution pH and ionic composition. Therefore, manure-derived biochars had lasting lincomycin sequestration capacity, implying that biochar soil amendment could significantly affect the distribution, transport, and bioavailability of lincomycin in agroecosystems.


Subject(s)
Charcoal , Lincomycin/chemistry , Manure , Adsorption , Soil , Water
13.
Sci Rep ; 5: 11472, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26112341

ABSTRACT

Recent discoveries of the photoresponse of molybdenum disulfide (MoS2) have shown the considerable potential of these two-dimensional transition metal dichalcogenides for optoelectronic applications. Among the various types of photoresponses of MoS2, persistent photoconductivity (PPC) at different levels has been reported. However, a detailed study of the PPC effect and its mechanism in MoS2 is still not available, despite the importance of this effect on the photoresponse of the material. Here, we present a systematic study of the PPC effect in monolayer MoS2 and conclude that the effect can be attributed to random localized potential fluctuations in the devices. Notably, the potential fluctuations originate from extrinsic sources based on the substrate effect of the PPC. Moreover, we point out a correlation between the PPC effect in MoS2 and the percolation transport behavior of MoS2. We demonstrate a unique and efficient means of controlling the PPC effect in monolayer MoS2, which may offer novel functionalities for MoS2-based optoelectronic applications in the future.

14.
Environ Sci Technol ; 49(13): 7726-34, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26055623

ABSTRACT

Removal of arsenic (As) from water supplies is needed to reduce As exposure through drinking water and food consumption in many regions of the world. Magnetite nanoparticles (MNPs) are promising and novel adsorbents for As removal because of their great adsorption capacity for As and easy separation. This study aimed to investigate the adsorption mechanism of arsenate, As(V), and arsenite, As(III), on MNPs by macroscopic adsorption experiments in combination with thermodynamic calculation and microspectroscopic characterization using synchrotron-radiation-based X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Adsorption reactions are favorable endothermic processes as evidenced by increased adsorption with increasing temperatures, and high positive enthalpy change. EXAFS spectra suggested predominant formation of bidentate binuclear corner-sharing complexes ((2)C) for As(V), and tridentate hexanuclear corner-sharing ((3)C) complexes for As(III) on MNP surfaces. The macroscopic and microscopic data conclusively identified the formation of inner-sphere complexes between As and MNP surfaces. More intriguingly, XANES and XPS results revealed complex redox transformation of the adsorbed As on MNPs exposed to air: Concomitant with the oxidation of MNPs, the oxidation of As(III) and MNPs was expected, but the observed As(V) reduction was surprising because of the role played by the reactive Fe(II).


Subject(s)
Arsenic/isolation & purification , Magnetite Nanoparticles/chemistry , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Isoelectric Point , Osmolar Concentration , Oxidation-Reduction , Photoelectron Spectroscopy , Thermodynamics , Water Supply , X-Ray Absorption Spectroscopy
15.
Nanoscale ; 6(18): 10562-8, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25117572

ABSTRACT

The development of graphene electronic devices produced by industry relies on efficient control of heat transfer from the graphene sheet to its environment. In nanoscale devices, heat is one of the major obstacles to the operation of such devices at high frequencies. Here we have studied the transport of hot carriers in epitaxial graphene sheets on 6H-SiC (0001) substrates with and without hydrogen intercalation by driving the device into the non-equilibrium regime. Interestingly, we have demonstrated that the energy relaxation time of the device without hydrogen intercalation is two orders of magnitude shorter than that with hydrogen intercalation, suggesting application of epitaxial graphene in high-frequency devices which require outstanding heat exchange with an outside cooling source.

16.
Nanotechnology ; 22(33): 335701, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21775805

ABSTRACT

The electron transport behavior in chemically reduced graphene oxide (rGO) sheets with different thicknesses of 2, 3, and 5 nm was investigated. The four-probe method for the sheet resistance (R(S)) measurement on the intensively reduced graphene oxide samples indicates an Arrhenius characteristic of the electron transport at zero magnetic field B = 0, consistent with previous experimental results on well-reduced GO samples. The anticipated variable range hopping (VRH) transport of electrons in a two-dimensional electron system at low temperatures was not observed. The measured R(S) of the rGO samples are below 52 kΩ/square at room temperature. With the application of a magnetic field up to 4 T, negative magnetoresistance in the Mott VRH regime was observed. The magnetotransport features support a model based on the spin-coupling effect from the vacancy-induced midgap states that facilitate the Mott VRH conduction in the presence of an external magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...