Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(22): eadf6649, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37256940

ABSTRACT

The experimental observation of nonlinear two-photon pumped vortex lasing from perovskite metasurfaces is demonstrated. The vortex lasing beam is based on symmetry-protected quasi-bound states in the continuum (QBICs). The topological charge is estimated to be +1 according to the simulation result. The quality factor and lasing threshold are around 1100 and 4.28 mJ/cm2, respectively. Theoretical analysis reveals that the QBIC mode originates from the magnetic dipole mode. The lasing wavelength can be experimentally designed within a broad spectral range by changing the diameter and periodicity of the metasurface. The finite array size effect of QBIC can affect the quality factor of the lasing and be used to modulate the lasing. Results shown in this study can lead to more complex vortex beam lasing from a single chip and previously unidentified ways to obtain ultrafast modulation of the QBIC lasing via the finite array size effect.

2.
ACS Appl Mater Interfaces ; 13(1): 1152-1157, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33350805

ABSTRACT

Rapid detection of the handiness of chiral molecules is an important topic for pharmaceutical industries because chiral drugs with opposing handiness sometimes exhibit unwanted side effects. In this research, a rapid optical method is proposed to determine the handiness of the chiral drug "Thalidomide". The platform is a large array of three-dimensional (3D) twisted metamaterials fabricated with a novel method by combining nanospherical-lens lithography (NLL) and hole-mask lithography (HML). The fabrication is high-throughput and the twisted metamaterials cover a large area. Strong circular dichroism (CD) response is observed in the near-infrared (NIR) region, which enables the chiral detection to be performed by a low-cost and portable spectroscope system. The proposed nanofabrication method significantly improves the capabilities of NLL and HML, which can be quickly adapted to fabricate various periodic 3D metamaterials. In addition, the results of this research pave the road for the rapid penetration of nanophotonics into the pharmaceutical industries.


Subject(s)
Nanostructures/chemistry , Thalidomide/chemistry , Circular Dichroism/methods , Stereoisomerism
3.
ACS Appl Mater Interfaces ; 10(21): 17973-17984, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29737157

ABSTRACT

Further technological development of perovskite solar cells (PSCs) will require improvements in power conversion efficiency and stability, while maintaining low material costs and simple fabrication. In this Research Article, we describe top-illuminated ITO-free, stable PSCs featuring microcavity structures, wherein metal layers on both sides on the active layers exerted light interference effects in the active layer, potentially increasing the light path length inside the active layer. The optical constants (refractive index and extinction coefficient) of each layer in the PSC devices were measured, while the optical field intensity distribution was simulated using the transfer matrix method. The photocurrent densities of perovskite layers of various thicknesses were also simulated; these results mimic our experimental values exceptionally well. To modify the cavity electrode surface, we deposited a few nanometers of ultrathin MoO3 (2, 4, and 6 nm) in between the Ag and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) layers provide hydrophobicity to the Ag surface and elevate the work function of Ag to match that of the hole transport layer. We achieved a power conversion efficiency (PCE) of 13.54% without hysteresis in the device containing a 4 nm-thick layer of MoO3. In addition, we fabricated these devices on various cavity electrodes (Al, Ag, Au, Cu); those prepared using Cu and Au anodes displayed improved device stability of up to 72 days. Furthermore, we prepared flexible PSCs having a PCE of 12.81% after incorporating the microcavity structures onto poly(ethylene terephthalate) as the substrate. These flexible solar cells displayed excellent stability against bending deformation, maintaining greater than 94% stability after 1000 bending cycles and greater than 85% after 2500 bending cycles performed with a bending radius of 5 mm.

4.
ACS Appl Mater Interfaces ; 9(29): 24917-24925, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28671812

ABSTRACT

Nanophotonics has been a focused research discipline for the past decade and has resulted in many novel concepts that promise to change human life. However, the actual penetration of this research into real products is severely limited mostly due to the slow development of economic nanofabrication. In this study, we have demonstrated a versatile and low-cost nanofabrication method referred to as "angled nanospherical-lens lithography (A-NLL)", which is able to produce large-scale and periodic nanopatterns. The nanopatterns designed within a two-dimensional polar chart can be carefully fabricated on the substrate. The fabricated patterns easily cover an area larger than 1 cm2, which is beneficial as platforms for surface enhanced infrared absorption (SEIRA) where an expensive and bulky IR microscope is not required. We believe that the proposed A-NLL method is ideal for industrialization of future nanophotonic applications.

5.
Adv Mater ; 28(39): 8687-8694, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27515370

ABSTRACT

The performance of hybrid perovskite-based light-emitting diodes (LEDs) is markedly enhanced by the application of a NiOx electrode interlayer and moderate methylamine treatment. A hybrid perovskite-based LED exhibits a peak luminous efficiency of 15.9 cd A-1 biased at 8.5 V, 407.65 mA cm-2 , and 65 300 cd m-2 , showing a distinctive impact for future applications.

SELECTION OF CITATIONS
SEARCH DETAIL